Ferrodomains banner
 

Project 19-28594X of the Czech Science Foundation:
Ferroelectric skyrmions (2019-2023)

Domain walls in ferroelectrics are naturally formed 2D solitons with a defined, nm-thick polarization profile stable over macroscopic lateral dimensions. Strong coupling of the polarization gradient with strain drastically changes the material properties within the domain wall thickness. Increasing attention is paid to these mobile interfaces because the characterization tools have recently reached the desired nanoscale resolution, needed to uncover the rich spectrum of new phenomena expected there. We are convinced that some ferroelectrics can also host 1D analogues of domain walls, i.e. spontaneously formed ferroelectric line solitons, similar to the recently experimentally confirmed Bogdanov-Yablonskitype magnetic skyrmion lines. We wish to extend the explorations also to these interesting topological objects and to pave a path to the experimental discovery of the ferroelectric skyrmion phases, analogous to the vortex states in superconductors and skyrmion phases of chiral magnets.

GACR 15-04121S: Emergent perspectives of ferroelectric interfaces (2015-2017)

The project focuses on investigation of the structure and properties of ideal two-dimensional nanoscale objects: domain walls and similar interfaces in modern ferroelectric materials. The research will be targeted to explore the nature and application potential of three recently reported discoveries: (i) ferroelectric photovoltaic effect on domain walls of bismuth ferrite, (ii) exotic chiral domain wall species in rhombohedral barium titanate and (iii) giant softening of elastic constants of relaxor ferroelectrics.

GACR P204/10/0616: Modern piezoelectric perovskites: lattice vibrations and domain walls (2010-2012)

The main goal of this project is to achieve a deeper understanding of the mechanisms leading to high permittivity and piezoelectricity in modern perovskite-type materials. For this purpose we will use a range of spectroscopic techniques and closely related theoretical first-principles and phenomenological calculations. In particular, we expect to get insight in typical domain structures of these materials by employing apparatus allowing simultaneous recording of local Raman and piezoelectric response using the recently available combination of micro-Raman and atomic force microscope scanning techniques. Bulk spectroscopic experiments will be used to refine the material-specific Ginzburg-Landau-Devonshire models needed to quantify the role of the identified nanodomain arrangements in the macroscopic piezoelectric response.

GACR 202-06-0411: Domain phenomena in ferroic crystals (2006-2008)

Main aim of the proposed project is the study of domain structures in crystals belonging to the various ferroelectric species (BaTiO3, KNbO3, LiTaO3, LiNbO3, Pb5Ge3O11 etc.). Technically, the subject is approached by applying domain engineering techniques, phenomenological modelling, optical microscopy, piezoelectric measurements, as well as structural and spectroscopic investigations. The final application target is enhancement of the piezoelectric coefficients due to the domain engineering in crystals with defined multi-domain structures. Second possible goal is to demonstrate tuning of the resonant frequency temperature dependence for piezoelectric resonators with multi-domain structure.