Polarization and finite fields

Eric Bousquet

University of Liège

eric.bousquet@uliege.be

ABINIT school on ground state and linear response properties 2019

- Polarization in periodic ionic crystals
- Berry phase treatment of polarization
- Finite E-field
- Finite D-field

Electric dipole between two charges +Q and -Q:

+
$$\mathbf{p} = Q \mathbf{d}$$
 For a collection of charges: $\mathbf{p} = \sum_i Q_i \mathbf{r}_i$

Electric dipole between two charges +Q and -Q:

+
$$\mathbf{p}$$
 p = Q **d** For a collection of charges: $\mathbf{p} = \sum_i Q_i \mathbf{r}_i$

For a non-polar periodic 1-D ionic chain: dipole moment per unit cell

Non-zero!

Electric dipole between two charges +Q and -Q:

+
$$\mathbf{p} = Q \mathbf{d}$$
 For a collection of charges: $\mathbf{p} = \sum_i Q_i \mathbf{r}_i$

For a non-polar periodic 1-D ionic chain: dipole moment per unit cell

Electric dipole between two charges +Q and -Q:

+
$$\mathbf{p} = Q \mathbf{d}$$
 For a collection of charges: $\mathbf{p} = \sum_i Q_i \mathbf{r}_i$

For a non-polar periodic 1-D ionic chain: dipole moment per unit cell

Electric dipole between two charges +Q and -Q:

•
$$\mathbf{p} = Q \, \mathbf{d}$$
 For a collection of charges: $\mathbf{p} = \sum_i Q_i \mathbf{r}_i$

Non-zero and origin dependent!

Polarization ill defined in periodic solids:

- Non-zero polarization for non-polar crystal!
- Lattice polarization (quantum): ..., -1/2, 1/2, ...
- Centrosymmetric around zero (can contain 0)

Polarization ill defined in periodic solids:

- Non-zero polarization for non-polar crystal!
- Lattice polarization (quantum): ..., -1/2, 1/2, ...
- Centrosymmetric around zero (can contain 0)

Polarization ill defined in periodic solids:

- Non-zero polarization for non-polar crystal!
- Lattice polarization (quantum): ..., -1/2, 1/2, ...
- Centrosymmetric around zero (can contain 0)

Different values! (differ by a quantum of polarization $\pm \frac{Q}{2}$)

However, the change of polarization is constant: $\delta p = \frac{Qd}{a}$

Only the change of polarization is well defined

Idem in 3D: polarization quantum in direction $i = \frac{S.e}{\Omega}a_i$ (S = spin degeneracy, $\Omega =$ unit cell volume)

"More realistic" solid: ionic $(+Q \times 2)$ + electronic (-2Q) contributions

$$P(para) = \frac{1}{a} \left(Q \frac{a}{4} + Q \frac{3a}{4} - 2Q \frac{3a}{4} \right) = -\frac{Q}{2}$$

$$P(polar) = \frac{1}{a} \left[Q\left(\frac{a}{4} + d\right) + Q\frac{3a}{4} - 2Q\left(\frac{3a}{4} - \Delta\right) \right] = Q\left(-\frac{1}{2} + \frac{d}{a} + \frac{2\Delta}{a}\right)$$

$$\delta P = Q\left(\frac{d}{a} + \frac{2\Delta}{a}\right)$$

How to "localize" the electrons? --→ Wannier Functions

They are FT of the Bloch functions $\psi_{n\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_{n\mathbf{k}}(\mathbf{r})$:

$$w_n(\mathbf{r}-\mathbf{R}) = \frac{\Omega}{(2\pi)^3} \int_{BZ} \psi_{n\mathbf{k}}(\mathbf{r}) e^{-i\mathbf{k}\cdot\mathbf{R}} d^3\mathbf{k}$$

Here it is posible to define the Wannier center ("position"):

$$<\mathbf{r}_n>=\int w_n^*(\mathbf{r}) \mathbf{r} w_n(\mathbf{r}) d^3\mathbf{r}$$

or with $\mathbf{r} = -i\frac{\partial}{\partial \mathbf{k}}$:

$$<\mathbf{r}_{n}>=irac{\Omega}{(2\pi)^{3}}\int_{BZ}\left\langle u_{n\mathbf{k}}\left|rac{\partial u_{n\mathbf{k}}}{\partial\mathbf{k}}
ight
angle e^{-i\mathbf{k}\cdot\mathbf{R}}d^{3}\mathbf{k}
ight
angle$$

-!- w_n are not uniquely defined (gauge)! --> Maximally-localized w_n

Wannier function formulation of P: ionic + electronic (w_n) contributions

$$\mathbf{P} = \frac{1}{\Omega} \left(\sum_{i} Q_{i} \mathbf{r}_{i} + \sum_{n} Q_{n} < \mathbf{r}_{n} > \right)$$

$$\delta \mathbf{P} = \mathbf{P}(polar) - \mathbf{P}(para)$$
$$= \delta \mathbf{P}_{ionic} - \frac{2ie}{(2\pi)^3} \sum_n \int_{BZ} \left\langle u_{n\mathbf{k}}^{polar} \left| \frac{\partial u_{n\mathbf{k}}^{polar}}{\partial \mathbf{k}} \right\rangle - \left\langle u_{n\mathbf{k}}^{para} \left| \frac{\partial u_{n\mathbf{k}}^{para}}{\partial \mathbf{k}} \right\rangle e^{-i\mathbf{k}\cdot\mathbf{R}} d^3\mathbf{k}$$

To compute polarization one needs to compute (Berry phase)

$$\mathbf{P}^{elec} = -\frac{2ie}{(2\pi)^3} \sum_{n} \int_{BZ} \left\langle u_{n\mathbf{k}} \left| \frac{\partial u_{n\mathbf{k}}}{\partial \mathbf{k}} \right\rangle e^{-i\mathbf{k}\cdot\mathbf{R}} d^3\mathbf{k} \right\rangle$$

Discretized form (King-Smith & Vanderbilt)

$$\mathbf{P}_{\parallel}^{elec} = -\frac{2ie}{(2\pi)^3} \sum_{m} \int \sum_{j=1}^{N_k} \operatorname{Im}\left\{ \ln \det\left[\left\langle u_{n\mathbf{k}_j} \left| u_{m\mathbf{k}_{j+1}} \right\rangle\right] \right\} e^{-i\mathbf{k}.\mathbf{R}} d^3\mathbf{k}_{\perp}$$

or (Wannier functions)

$$\mathbf{P}^{elec} = -\frac{2e}{\Omega} \sum_{n} \int \mathbf{r} \left| w_{n} \right|^{2} d\mathbf{r}$$

Can be implemented in DFT!

King-Smith & Vanderbilt discretized Bery phase of *P* along a_i (*berryopt* = +1):

$$\mathbf{P}^{elec}.\mathbf{a}_{i} = -\frac{2e}{\Omega} \frac{1}{N_{\perp}^{(i)}} \sum_{l=1}^{N_{\perp}^{(i)}} \operatorname{Im} \operatorname{In} \prod_{j=0}^{N_{i}-1} det \left[S(\mathbf{k}_{j}^{(i)}, \mathbf{k}_{j+1}^{(i)}) \right]$$

with $S_{nm}(\mathbf{k}, \mathbf{k}') = \langle u_{n\mathbf{k}} | u_{m\mathbf{k}'} \rangle$ and $N_{\perp}^{(i)} = N_k^{(j)} \times N_k^{(h)} = \#$ of strings along \mathbf{a}_i , each containing N_i points $\mathbf{k}_i^{(i)} = \mathbf{k}_{\perp}^{(l)} + (j/N_i)\mathbf{a}_i$; Ex:

Calculation for P_z :

- 4 strings

- 6 sampling k-points in the k_z direction

Convergence have to be done on <u>both</u> # of strings and # of sampling points

Sum over all occupied bands $n \rightarrow$ Insulating state only

Alternative method (input flag berryopt = -1):

$$\mathbf{P}^{elec}.\mathbf{a}_{i} = -\frac{2e}{\Omega N_{k}} \sum_{\mathbf{k}} \sum_{\mathbf{b}} w_{\mathbf{b}} \mathbf{b} \, \mathrm{Im} \, \{ \, \mathrm{In} \, det \, [S(\mathbf{k}, \mathbf{k} + \mathbf{b})] \}$$

where **b** is a vector connecting a **k** point to one of its nearest neighbors and w_b is a weight factor such that it satisfies:

$$\sum_{f b} w_{f b} b_lpha b_eta = rac{g_{lphaeta}}{4\pi^2}$$

with $g_{\alpha\beta}$ is the metric tensor of the real space lattice and b_{α} the reduced coordinates of **b**.

--- check convergence with the regular k-point grid

 \mathbf{P}^{ion} is simply given by $1/\Omega \sum_i Q_i \mathbf{r}_i$

It is recommended to use this method, i.e. berryopt = -1.

Berry phase polarization calculation in Abinit

Input flags are *berryopt* = -1 and *rfdir* = 111

Output looks like that:

```
Computing the polarization (Berry phase) for reciprocal vector:

0.00000 0.00000 0.16667 (in reduced coordinates)

0.00000 0.00000 0.01509 (in cartesian coordinates - atomic units)

Number of strings: 36

Number of k points in string: 6
```

Summary of the results	
Electronic Berry phase	6.741333833E-01
Ionic phase	-3.744257751E-01
Total phase	2.997076082E-01
Remapping in [-1,1]	2.997076082E-01
Polarization	6.000077073E-03 (a.u. of charge)/bohr^2

```
Polarization 3.432929850E-01 C/m<sup>2</sup>
```

```
Polarization in cartesian coordinates (C/m^2):
```

(the sum of the	electronic and i	ionic Berry phase has	s been fold into [-1,	1])
Electronic:	0.747369006E-13	3 0.179240839E-13	0.772170126E+00	
Ionic:	0.00000000E+00	0.00000000E+00	-0.428877141E+00	
Total:	0.747369006E-13	3 0.179240839E-13	0.343292985E+00	

DFT implementation:

Be careful with automatic removal of Quantum ("remapping")!

Quantum of polarization along direction *i*: $P_i = n \frac{2e}{\Omega} a_i = n \frac{2e}{a_j a_k}$

If $\delta P_i > P_i$:

The automatic removal of quantum can incorrectly remove a quantum while it is a real $P! \rightarrow always$ check your calculations.

Ex: BiFeO₃ PRB 71, 014113 (2005)

Correct value: $187.8-92.8 = 95.0 \ \mu C.cm^{-2}$

Wrong value: $1/2[2.3-(-2.3)] = 2.3 \ \mu C.cm^{-2}$ and plenty of others!

See also another example in PRB 86, 054107 (2012)

How P is measured experimentally?

 $\Delta P = (P_A - P_B) = 2 \times P \dashrightarrow$ measured through hysteresis!

P is not a direct observable but its integration on a closed loop is.

Berry phase method for P ("modern theory of polarization") does the loop in reciprocal space of periodic crystals.

Application: Born effective charges

Polarization induced by atomic displacement: ionic + electronic

$$\mathbf{P} = rac{1}{\Omega} \left(\sum_{i} Q_i \mathbf{r}_i + \sum_{n} Q_n < \mathbf{r}_n >
ight)$$
 $\mathbf{P} \equiv \mathbf{P}^{ion} + \mathbf{P}^{elec}$
 $\mathbf{P} \equiv rac{1}{\Omega} \sum_{i} Q_i^{eff} \mathbf{r}_i$

P can be seen as induced by a motion of rigid ions of charge Q_i^{eff}

Application: Born effective charges

The change in **P** relative to the displacement $\Delta \mathbf{d}_{\kappa}$ of an atom κ :

$$\Delta \mathbf{P} = \frac{Q_{\kappa}^{\text{eff}}}{\Omega} \Delta \mathbf{d}_{\kappa} \dashrightarrow Q_{\kappa}^{\text{eff}} = \Omega \frac{\Delta \mathbf{P}}{\Delta \mathbf{d}}$$

Tensorial notation:

$$Q_{\kappa,ij}^{eff} = \Omega rac{\Delta P_i}{\Delta d_{\kappa,j}} = Z_{\kappa,ij}^*$$

The Born effective charge Z_{ij}^* can be computed using Berry phase for **P**

Can be large if strong dynamical charge transfer:

	$ Z^* $ (e)	nominal (e)		<i>Z</i> *	nominal
NaCl	1.06	1	GeTe	6.90	2
MgO	1.98	2	BaTiO ₃ (Ti)	7.00	4
BaO	2.97	2			

(allways check the charge neutrality: $\sum_{\kappa,j} Z^*_{\kappa,jj} = 0$)

Application: Piezoelectric coefficients

The change of **P** relative to a change of strain $\Delta \eta$:

$$\gamma_{lphaeta\delta} = rac{\Delta P_lpha}{\Delta \eta_{eta\delta}}$$

Born effective charges and piezoelectric coefficients can thus be calculated from finite differences technique through the calculation of ΔP under small atomic position or strain variations.

Reference papers:

- King-Smith & Vanderbilt: PRB R47 p.1651 (1993); PRB 48 p.4442 (1993)
- R. Resta: RMP 66 p.899 (1994); Lecture Notes 1999-2000 (see his website)
- N. Spaldin: J. Solid State Chem. 195, 2 (2012)

Wannier functions and P:

- Marzari & Vanderbilt: PRB 56 p.12847 (1997)
- Wu, Diéguez, Rabe & Vanderbilt: PRL 97 p.107602 (2006)
- Stengel & Spaldin: PRB 73 p.075121 (2006)

lonic crystal under static electric field

Access to the dielectric responses, field induced phase transition, ...

How to handle finite electric field in DFT?

Electric potential not periodic: $V(\mathbf{r}) = V_{KS}(\mathbf{r}) - e\mathcal{E}.\mathbf{r}$

eE.*r* is not periodic!

Bloch's theorem does not apply!

No ground state!

Potential not bounded from below!

Alternative solution: Electric enthalpy

$$F = E_{KS} - \Omega \mathscr{E}.\mathbf{P}$$

Minimization of the Electric enthalpy:

$$F = E_0 - \Omega \mathscr{E} \cdot P$$

where E_0 the KS energy and P is computed using the Berry phase formula:

$$-\frac{2e}{\Omega}\frac{1}{N_{\perp}^{(i)}}\sum_{l=1}^{N_{\perp}^{(l)}}\operatorname{Im}\,\operatorname{In}\,\prod_{j=0}^{N_{j}-1}det\left[S(\mathbf{k}_{j}^{(i)},\mathbf{k}_{j+1}^{(i)})\right]$$

or
$$-\frac{2e}{\Omega N_k} \sum_{\mathbf{k}} \sum_{\mathbf{b}} w_{\mathbf{b}} \mathbf{b} \operatorname{Im} \{ \operatorname{In} det[S(\mathbf{k}, \mathbf{k} + \mathbf{b})] \}$$

Can be minimized by standrad methods (band by band conjugate-gradient)

Problem of interband Zener tunneling (breakdown):

For a given \mathscr{E} , there is a limit on N_k point sampling Length scale $L_c = 2\pi/\Delta k \equiv$ supercell dimension

Keep $L_c < L_t \dashrightarrow N_k a/2\pi > E_g/e\mathscr{E}$

$$E_{tot} = E_0 - \Omega \mathscr{E}.P$$

Courtesy of D. Hamann

Not too large N_k / not too large \mathscr{E} !

but N_k has to be large enough to have converged results

$$E_{tot} = E_0 - \Omega \mathscr{E}.P$$

Courtesy of D. Hamann

P defined modulo $e\mathbf{R}/\Omega \longrightarrow E_{tot}$ defined modulo $e\mathscr{E}\mathbf{R}/\Omega$

Calculation of forces (Hellmann-Feynman theorem):

$$\mathbf{F}_{i} = -\frac{\partial}{\partial \mathbf{r}_{i}} \left[E_{0} - \Omega \mathscr{E} \cdot \left(\mathbf{P}^{\mathsf{elec}} + \mathbf{P}^{\mathsf{ion}} \right) \right] = -\frac{\partial E_{0}}{\partial \mathbf{r}_{i}} + \mathbf{e} Z_{i}^{\mathsf{ion}} \mathscr{E}$$

 $\frac{\partial E_0}{\partial r_i} \text{ already coded!}$ $\frac{\partial P^{elec}}{\partial r_i} = 0, \text{ Berry phase only depends on wave function}$

Idem for stress tensor:

$$\sigma_{lphaeta} = rac{1}{\Omega} rac{\partial}{\partial \eta_{lphaeta}} \left[E_0 - \Omega \mathscr{E}. \mathbf{P}
ight]$$

 $\frac{\partial P}{\partial \eta_{\alpha\beta}} = 0$ if the potential drop $V = -\mathscr{E}.\mathbf{a}_i$ is fixed across each lattice vector or

$$\sigma_{\alpha\beta}^{(\mathscr{E})} = \sigma_{\alpha\beta}^{(V)} - \sum_{i=1}^{3} \mathscr{E}_{\alpha}(a_{i})_{\beta} P_{i} \quad \text{if } \mathscr{E} \text{ is fixed}$$

In practice in Abinit input just add:

berryopt 4 # activate E-field efield 5.135218E-05 0.0 0.0

Output:

Constant unreduced E calculation - final values: (a. u.) E: 5.135218000E-05 0.00000000E+00 0.0000000E+00 P: 5.158969927E-05 2.774100906E-09 -3.292033923E-10 [...] (S.I.), that is V/m for E, and C/m² for P E: 2.640635045E+07 0.00000000E+00 0.0000000E+00 P: 2.951692338E-03 1.587195217E-07 -1.883529357E-08 initberry: COMMENT -As a rough estimate, to be below the critical field, the bandgap of your system should be larger than 0.02 eV.

References:

- R.W. Nunes and X. Gonze, PRB 63, 155107 (2001).
- I. Souza, J. Iniguez and D. Vanderbilt, PRL 89, 117602 (2002).
- P. Umari and A. Pasquarello, PRL 89, 157602 (2002).
- N. Sai, K. M. Rabe and D. Vanderbilt, PRB 66, p104108 (2002).
- J. W. Zwanziger et al., Comput. Materials Sci. 58, p113 (2012).

Electric displacement vector: $\mathbf{D} = \mathscr{E} + 4\pi \mathbf{P}$

Electric displacement vector: $\mathbf{D} = \mathscr{E} + 4\pi \mathbf{P}$

In heterostructures, **D** is uniform (continuity at interfaces)

Supposing the functional $U(\mathbf{D}, v) = E_0(v) + \frac{\Omega}{8\pi} \left[\mathbf{D} - 4\pi \mathbf{P}(v)\right]^2$

with \mathbf{D} = external vector parameter and v = internal ionic and electronic degrees of freedom

Minimum of U at **D** fixed:

$$\frac{\partial U}{\partial v}\Big|_{\mathbf{D}} = \frac{\partial E_0}{\partial v} - \Omega(\mathbf{D} - 4\pi\mathbf{P})\frac{\partial \mathbf{P}}{\partial v} = 0$$

Fixed **D**, internal energy: $U(\mathbf{D}, v) = E_0(v) + \frac{\Omega}{8\pi} [\mathbf{D} - 4\pi \mathbf{P}(v)]^2$ Fixed \mathscr{E} , electric enthalpy: $E(\mathscr{E}, v) = E_0(v) - \Omega \mathscr{E} \mathbf{P}(v)$ Then:

$$\left. \frac{\partial F}{\partial v} \right|_{\mathscr{E}} = \left. \frac{\partial U}{\partial v} \right|_{\mathbf{D}} \quad \text{if} \quad \mathscr{E} = \mathbf{D} - 4\pi \mathbf{P}$$

D is then the electric displacement field: $\mathbf{D} = \mathscr{E} + 4\pi \mathbf{P}$

with $U = E_0 + \Omega/8\pi \mathscr{E}^2 \dashrightarrow$ correct crystal internal energy under \mathscr{E} -field

- $\label{eq:Fixed-entropy} \textit{Fixed-} \textit{\&} = \textit{closed-circuit boundary conditions}$
- Fixed- \mathbf{D} = open-circuit conditions with fixed charge Q
- Fixed- \mathbf{P} = no clear picture

In practice:

Fixed-&, electric enthalpy:

$$F(\mathscr{E}, v) = E_0(v) - \Omega \mathscr{E} \mathbf{P}(v)$$

(already implemented)

Update the \mathscr{E} -field after each SCF:

$$\mathscr{E}_{n+1} = \lambda (\mathbf{D} - 4\pi \mathbf{P}_n) + (1 - \lambda) \mathscr{E}_n$$

with λ = damping parameter to control the convergence Until criterion on E(v) is reached and $|\mathbf{D} - 4\pi \mathbf{P}_n - \mathscr{E}_n| < \text{tol}$

Example: Ferroelectric PbTiO₃

Example: Ferroelectric PbTiO₃

Example: Ferroelectric PbTiO₃

Electric equation of state: $\mathscr{E}(\mathbf{D})$, $\mathbf{D}(\mathbf{P})$, $\mathbf{P}(\mathscr{E})$

References:

- *Electric displacement as the fundamental variable in electronic-structure calculations*, M. Stengel, N. A. Spaldin and D. Vanderbilt, Nature Physics 5, p304 (2009)

- First-principles modeling of ferroelectric capacitors via constrained displacement field calculations, M. Stengel, D. Vanderbilt and N. A. Spaldin, PRB 80, 224110 (2009)

- Mapping the energy surface of PbTiO₃ in multidimensional electric-displacement space, J. Hong and D. Vanderbilt, PRB 84, 115107 (2011)

Status in Abinit (as of v8.10.3)

Capabilities:

- Berry phase works for both NC and PAW
- Forces and stresses are implemented for applied E-field (NC and PAW)
- Work for *nspden*= 1,2,4 and SOC

Technical limitations:

- Berry phase calculation parallelized over k-points only (no <code>parall_kgb</code>) \Rightarrow idem for E and D field
- Applied D-field might be troublesome to converge (work in progress...)

Other capabilities:

- Calculation of phonons, Born charges and ε[∞] under applied E-field (works only in sequential mode!), see PRB 74, 054304 (2006) and PRB 75, 115116 (2007).
- Constrained P calculation (https://docs.abinit.org/topics/ConstrainedPol/)