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Polarization in periodic solids

Electric dipole between two charges +Q and −Q:

p = Q d For a collection of charges: p = ∑i Qiri

For a non-polar periodic 1-D ionic chain: dipole moment per unit cell

p
a = +Q×0−Q× 1

2 =−Q
2

Non-zero!
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Polarization in periodic solids

Polarization ill defined in periodic solids:

Non-zero polarization for non-polar crystal!

Lattice polarization (quantum): . . . , -1/2, 1/2, . . .

Centrosymmetric around zero (can contain 0)

For a polar periodic 1-D chain:
p
a = Q× (0+d)

a − Q
2

= Q
(
−1

2 + d
a

)
p
a = Q

(
+ 1

2 + d
a

)
Different values! (differ by a quantum of polarization ±Q

2 )

However, the change of polarization is constant: δp = Qd
a
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Polarization in periodic solids

d/a

p

n=2

n=1

n=-1

n=-2

Quantum

δp

δp

δp

δp

-1.5

-0.5

0.5

1.5

-0.5 0.5

Only the change of polarization is well defined

Idem in 3D: polarization quantum in direction i = S.e
Ω ai (S = spin degeneracy,

Ω = unit cell volume)
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Polarization in periodic solids

“More realistic” solid: ionic (+Q×2) + electronic (−2Q) contributions

para

polar

P(para) =
1
a

(
Q

a
4

+ Q
3a
4
−2Q

3a
4

)
=−Q

2

P(polar) =
1
a

[
Q
(a

4
+ d
)

+ Q
3a
4
−2Q

(
3a
4
−∆

)]
= Q

(
−1

2
+

d
a

+
2∆

a

)

δP = Q
(

d
a

+
2∆

a

)
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Polarization in periodic solids

How to “localize” the electrons? 99K Wannier Functions

They are FT of the Bloch functions ψnk(r) = eik.runk(r):

wn(r−R) =
Ω

(2π)3

∫
BZ

ψnk(r)e−ik.Rd3k

Here it is posible to define the Wannier center (“position”):

< rn >=
∫

w∗n(r) r wn(r)d3r

or with r =−i ∂

∂k :

< rn >= i
Ω

(2π)3

∫
BZ

〈
unk

∣∣∣∣∂unk

∂k

〉
e−ik.Rd3k

-!- wn are not uniquely defined (gauge)! 99K Maximally-localized wn
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Polarization in periodic solids

Wannier function formulation of P: ionic + electronic (wn) contributions

para

polar

P =
1
Ω

(
∑
i

Qiri +∑
n

Qn < rn >

)

δP = P(polar)−P(para)

= δPionic−
2ie

(2π)3 ∑
n

∫
BZ

〈
upolar

nk

∣∣∣∣∣∂upolar
nk

∂k

〉
−

〈
upara

nk

∣∣∣∣∣∂upara
nk

∂k

〉
e−ik.Rd3k
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Polarization in periodic solids

To compute polarization one needs to compute (Berry phase)

Pelec =− 2ie
(2π)3 ∑

n

∫
BZ

〈
unk

∣∣∣∣∂unk

∂k

〉
e−ik.Rd3k

Discretized form (King-Smith & Vanderbilt)

Pelec
‖ =− 2ie

(2π)3 ∑
m

∫ Nk

∑
j=1

Im
{

ln det
[〈

unkj

∣∣∣umkj+1

〉]}
e−ik.Rd3k⊥

or (Wannier functions)

Pelec =−2e
Ω ∑

n

∫
r |wn|2 dr

Can be implemented in DFT!
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Polarization in periodic solids

King-Smith & Vanderbilt discretized Bery phase of P along ai (berryopt = +1):

Pelec .ai =−2e
Ω

1

N(i)
⊥

N(i)
⊥

∑
l=1

Im ln
Ni−1

∏
j=0

det
[
S(k(i)

j ,k(i)
j+1)

]

with Snm(k,k′) = 〈unk |umk′ 〉 and N(i)
⊥ = N(j)

k ×N(h)
k = # of strings along ai , each

containing Ni points k(i)
j = k(l)

⊥ + (j/Ni )ai ; Ex:

Calculation for Pz :

- 4 strings

- 6 sampling k-points in the kz direction

Convergence have to be done on both # of
strings and # of sampling points

Sum over all occupied bands n 99K Insulating state only
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Polarization in periodic solids

Alternative method (input flag berryopt =−1):

Pelec .ai =− 2e
ΩNk

∑
k

∑
b

wbb Im{ ln det [S(k,k + b)]}

where b is a vector connecting a k point to one of its nearest neighbors and wb
is a weight factor such that it satisfies:

∑
b

wbbαbβ =
gαβ

4π2

with gαβ is the metric tensor of the real space lattice and bα the reduced
coordinates of b.

99K check convergence with the regular k-point grid

Pion is simply given by 1/Ω∑i Qiri

It is recommended to use this method, i.e. berryopt =−1.
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Berry phase polarization calculation in Abinit

Input flags are berryopt =−1 and rfdir = 111

Output looks like that:
Computing the polarization (Berry phase) for reciprocal vector:
0.00000 0.00000 0.16667 (in reduced coordinates)
0.00000 0.00000 0.01509 (in cartesian coordinates - atomic units)

Number of strings: 36
Number of k points in string: 6

Summary of the results
Electronic Berry phase 6.741333833E-01

Ionic phase -3.744257751E-01
Total phase 2.997076082E-01

Remapping in [-1,1] 2.997076082E-01

Polarization 6.000077073E-03 (a.u. of charge)/bohr^2
Polarization 3.432929850E-01 C/m^2

Polarization in cartesian coordinates (C/m^2):
(the sum of the electronic and ionic Berry phase has been fold into [-1, 1])

Electronic: 0.747369006E-13 0.179240839E-13 0.772170126E+00
Ionic: 0.000000000E+00 0.000000000E+00 -0.428877141E+00
Total: 0.747369006E-13 0.179240839E-13 0.343292985E+00

Eric Bousquet Magnetism



Polarization in periodic solids

DFT implementation:
Be careful with automatic removal of Quantum (“remapping” )!

Quantum of polarization along direction i : Pi = n 2e
Ω ai = n 2e

aj ak

If δPi > Pi :

Correct

di/ai

pi

n-1

n

n+1

0 0.5

δp

Quantum

Automated

di/ai

pi

0 0.5

δpauto

Quantum

The automatic removal of quantum can incorrectly remove a quantum while it
is a real P! 99K always check your calculations.
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Polarization in periodic solids

Ex: BiFeO3 PRB 71, 014113 (2005)

Correct value: 187.8-92.8 = 95.0 µC.cm−2

Wrong value: 1/2[2.3-(-2.3)] = 2.3 µC.cm−2 and plenty of others!

See also another example in PRB 86, 054107 (2012)
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Polarization in periodic solids

How P is measured experimentally?

∆P = (PA−PB) = 2×P 99K measured through hysteresis!

P is not a direct observable but its integration on a closed loop is.

Berry phase method for P (“modern theory of polarization”) does the loop in
reciprocal space of periodic crystals.
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Application: Born effective charges

Polarization induced by atomic displacement: ionic + electronic

para

polar

P =
1
Ω

(
∑
i

Qiri +∑
n

Qn < rn >

)

P≡ Pion + Pelec

P≡ 1
Ω ∑

i
Qeff

i ri

P can be seen as induced by a motion of rigid ions of charge Qeff
i
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Application: Born effective charges

The change in P relative to the displacement ∆dκ of an atom κ:

∆P =
Qeff

κ

Ω
∆dκ 99K Qeff

κ = Ω
∆P
∆d

Tensorial notation:
Qeff

κ,ij = Ω
∆Pi

∆dκ,j
= Z ∗

κ,ij

The Born effective charge Z ∗ij can be computed using Berry phase for P

Can be large if strong dynamical charge transfer:

|Z ∗| (e) nominal (e) Z ∗ nominal

NaCl 1.06 1 GeTe 6.90 2

MgO 1.98 2 BaTiO3 (Ti) 7.00 4

BaO 2.97 2

(allways check the charge neutrality: ∑κ,j Z ∗κ,ij = 0)
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Application: Piezoelectric coefficients

The change of P relative to a change of strain ∆η :

γαβδ =
∆Pα

∆ηβδ

∆Vsample sample

Born effective charges and piezoelectric coefficients can thus be calculated
from finite differences technique through the calculation of ∆P under small
atomic position or strain variations.
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Polarization in periodic solids

Reference papers:

King-Smith & Vanderbilt: PRB R47 p.1651 (1993); PRB 48 p.4442 (1993)
R. Resta: RMP 66 p.899 (1994); Lecture Notes 1999-2000 (see his
website)
N. Spaldin: J. Solid State Chem. 195, 2 (2012)

Wannier functions and P:

Marzari & Vanderbilt: PRB 56 p.12847 (1997)
Wu, Diéguez, Rabe & Vanderbilt: PRL 97 p.107602 (2006)
Stengel & Spaldin: PRB 73 p.075121 (2006)
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Ionic crystal under static electric field

nucleuselectrons

No Field Applied Field

- + - +

- + -+

- + - +

- + -+

anion cation

- + - +

- + -+

- + - +

- + -+

Electronic 
response

Ionic 
response

Atom

Ions

Access to the dielectric responses, field induced phase transition, ...
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Treatment of static electric field

How to handle finite electric field in DFT?

Electric potential not periodic: V (r) = VKS(r)−eEEE .r

r

V(r)

-a a

eE .r is not periodic!

Bloch’s theorem does not apply!

No ground state!

Potential not bounded from be-
low!

Alternative solution: Electric enthalpy

F = EKS−ΩEEE .P
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Treatment of static electric field

Minimization of the Electric enthalpy:

F = E0−ΩE .P

where E0 the KS energy and P is computed using the Berry phase formula:

−2e
Ω

1

N(i)
⊥

N(i)
⊥

∑
l=1

Im ln
Ni−1

∏
j=0

det
[
S(k(i)

j ,k(i)
j+1)

]

or − 2e
ΩNk

∑
k

∑
b

wbb Im{ ln det [S(k,k + b)]}

Can be minimized by standrad methods (band by band conjugate-gradient)
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Treatment of static electric field

Problem of interband Zener tunneling (breakdown):

Nk= 8

Ec

Ev

E
g

L
t

Lc

E-field

For a given E , there is a limit on Nk point sampling

Length scale Lc = 2π/∆k ≡ supercell dimension

Keep Lc < Lt 99K Nk a/2π > Eg/eE
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Treatment of static electric field

Etot = E0−ΩE .P

Courtesy of D. Hamann

Not too large Nk / not too large E !

but Nk has to be large enough to have converged results
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Treatment of static electric field

Etot = E0−ΩE .P

Courtesy of D. Hamann

P defined modulo eR/Ω 99K Etot defined modulo eEEE R/Ω
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Treatment of static electric field

Calculation of forces (Hellmann-Feynman theorem):

Fi =− ∂

∂ ri

[
E0−ΩEEE .

(
Pelec + Pion

)]
=−∂E0

∂ ri
+ eZ ion

i EEE

∂E0
∂ ri

already coded!

∂Pelec

∂ ri
= 0, Berry phase only depends on wave function

Idem for stress tensor:

σαβ =
1
Ω

∂

∂ηαβ

[E0−ΩEEE .P]

∂P
∂ηαβ

= 0 if the potential drop V =−EEE .ai is fixed across each lattice vector or

σ
(E )

αβ
= σ

(V )

αβ
−

3

∑
i=1

Eα (ai )β Pi if E is fixed
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Treatment of static electric field

In practice in Abinit input just add:

berryopt 4 # activate E-field
efield 5.135218E-05 0.0 0.0

Output:

Constant unreduced E calculation - final values:
(a. u.)

E: 5.135218000E-05 0.000000000E+00 0.000000000E+00
P: 5.158969927E-05 2.774100906E-09 -3.292033923E-10

[...]

(S.I.), that is V/m for E, and C/m^2 for P
- E: 2.640635045E+07 0.000000000E+00 0.000000000E+00

P: 2.951692338E-03 1.587195217E-07 -1.883529357E-08

initberry: COMMENT -
As a rough estimate,
to be below the critical field, the bandgap of your system
should be larger than 0.02 eV.
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Treatment of static electric field

References:

- R.W. Nunes and X. Gonze, PRB 63, 155107 (2001).

- I. Souza, J. Iniguez and D. Vanderbilt, PRL 89, 117602 (2002).

- P. Umari and A. Pasquarello, PRL 89, 157602 (2002).

- N. Sai, K. M. Rabe and D. Vanderbilt, PRB 66, p104108 (2002).

- J. W. Zwanziger et al., Comput. Materials Sci. 58, p113 (2012).
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Constrained D calculations

Electric displacement vector: D = EEE + 4πP

Courtesy of D. Vanderbilt

P(D) is monotonic
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Constrained D calculations

Electric displacement vector: D = EEE + 4πP

In heterostructures, D is uniform (continuity at interfaces)
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Constrained D calculations

Supposing the functional U(D,ν) = E0(ν) + Ω
8π

[D−4πP(ν)]2

with D = external vector parameter and ν = internal ionic and electronic
degrees of freedom

Minimum of U at D fixed:

∂U
∂ν

∣∣∣∣
D

=
∂E0

∂ν
−Ω(D−4πP)

∂P
∂ν

= 0

Fixed D, internal energy: U(D,ν) = E0(ν) + Ω
8π

[D−4πP(ν)]2

Fixed E , electric enthalpy: E(E ,ν) = E0(ν)−ΩEEE P(ν)

Then:
∂F
∂ν

∣∣∣∣
EEE

=
∂U
∂ν

∣∣∣∣
D

if EEE = D−4πP

D is then the electric displacement field: D = EEE + 4πP

with U = E0 + Ω/8πE 2 99K correct crystal internal energy under E -field
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Constrained D calculations

Fixed-EEE = closed-circuit boundary conditions

Fixed-D = open-circuit conditions with fixed charge Q

Fixed-P = no clear picture
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Constrained D calculations

In practice:

Fixed-E , electric enthalpy:

F (E ,ν) = E0(ν)−ΩEEE P(ν)

(already implemented)

Update the E -field after each SCF:

EEE n+1 = λ (D−4πPn) + (1−λ )EEE n

with λ = damping parameter to control the convergence

Until criterion on E(ν) is reached and |D−4πPn−EEE n|< tol
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Constrained D calculations

Example: Ferroelectric PbTiO3

Double Well

Tetragonal Cubic Tetragonal

−P +P

“Down” “Up”
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Constrained D calculations

Example: Ferroelectric PbTiO3

Eric Bousquet Magnetism



Constrained D calculations

Example: Ferroelectric PbTiO3

Electric equation of state: EEE (D), D(P), P(EEE )
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Constrained D calculations

References:

- Electric displacement as the fundamental variable in electronic-structure
calculations, M. Stengel, N. A. Spaldin and D. Vanderbilt, Nature Physics 5,
p304 (2009)

- First-principles modeling of ferroelectric capacitors via constrained
displacement field calculations, M. Stengel, D. Vanderbilt and N. A. Spaldin,
PRB 80, 224110 (2009)

- Mapping the energy surface of PbTiO3 in multidimensional
electric-displacement space, J. Hong and D. Vanderbilt, PRB 84, 115107
(2011)
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https://journals.aps.org/prb/abstract/10.1103/PhysRevB.80.224110
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.84.115107
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Status in Abinit (as of v8.10.3)

Capabilities:

Berry phase works for both NC and PAW

Forces and stresses are implemented for applied E-field (NC and PAW)

Work for nspden= 1,2,4 and SOC

Technical limitations:

Berry phase calculation parallelized over k-points only (no parall_kgb)⇒
idem for E and D field

Applied D-field might be troublesome to converge (work in progress...)

Other capabilities:

Calculation of phonons, Born charges and ε∞ under applied E-field (works
only in sequential mode!), see PRB 74, 054304 (2006) and PRB 75,
115116 (2007).

Constrained P calculation (https://docs.abinit.org/topics/ConstrainedPol/)
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https://journals.aps.org/prb/abstract/10.1103/PhysRevB.74.054304
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.115116
https://journals.aps.org/prb/abstract/10.1103/PhysRevB.75.115116

