ABINIT School on ground state, linear response properties and dynamics Prague, Sept. 2-6, 2019

FROM RESEARCH TO INDUSTRY

Density-Functional Perturbation Theory: response to electric field and strain

Marc Torrent CEA, DAM, DIF, Arpajon, F-91297 France

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

REFERENCES - AKNOWLEDGEMENTS

- X. Gonze (UCL, Belgium) and team
 DFPT in ABINIT, response to electric field, NC pseudopotentials
- D. Hamann (Mat-Sim, US) and team elastic and piezoelectric tensor tensor, NC pseudopotentials
- M. Torrent (CEA, France) DFPT+PAW
- A. Martin (CEA, France)
 Elastic and piezoelectric tensors within PAW
- D. Vanderbilt and team (Rutgers, US)
 Various contributions to DFPT, clarification on formalisms
- And others...

Metric tensor formulation of strain in density-functional perturbation theory Hamann, Wu, Rabe, Vanderbilt, Phys. Rev. B 71, 035117 (2005). Generalized-gradient-functional treatment of strain in densityfunctional perturbation theory Hamann, Rabe, Vanderbilt, Phys. Rev. B 72, 033102 (2005). Systematic treatment of displacements, strains, and electric fields in density- functional perturbation theory Wu, Vanderbilt, Hamann, Phys. Rev. B 72, 035105 (2005). See vanderbilt-anaddb-notes.pdf and elasticity-oganov.pdf in ~abinit/doc/theory D. Hamann and X. Gonze are acknowledged for having inspired several slides of this presentation

Projector augmented-wave approach to density-functional perturbation theory Audouze, Jollet, Torrent, Gonze, Phys. Rev. B 73, 235101 (2006) Projector augmented-wave formulation of response to strain and electric-field perturbation within DFPT Martin, Torrent, Caracas, Phys. Rev. B 99, 094112 (2019). 1st-principles responses of solids to atomic displacements & homogeneous electric fields: Implementation of a conjugategradient algorithm Gonze, Phys. Rev. B 55, 10337 (1997). Gonze, Lee, Phys. Rev. B 55, 10355 (1997).

- DDFT Recap
- Response to homogeneous electric field
 - Long wavelength limit
- Response to strain
 - Metric tensor formulation
 - Technical issues
- Example Real application
 - Application to geophysics
 - Performances

Density-functional perturbation theory Quick recap...

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

DENSITY-FUNCTIONAL PERTURBATION THEORY

All quantities are expanded in **power series** in a DF energy parameter λ:

$$X(\lambda) = X^{(0)} + \lambda X^{(1)} + \lambda^2 X^{(2)} + \cdots, \quad X = E_{el}, T, V_{ext}, \psi_{\alpha}(\mathbf{r}), n(\mathbf{r}), \varepsilon_{\alpha}, H$$

- Solutions $\psi^{(0)}$ of Kohn-Sham equation minimize the usual DFT functional $E^{(0)}$ $H^{(0)} |\psi_{\alpha}^{(0)}\rangle = \varepsilon_{\alpha}^{(0)} |\psi_{\alpha}^{(0)}\rangle$
- The variational functional for $E^{(2)}$ is minimized by solutions $\psi^{(1)}$ of the self- consistent Sternheimer equation:

$$P_c(H^{(0)} - \varepsilon_{\alpha}^{(0)})P_c \left| \psi_{\alpha}^{(1)} \right\rangle = -P_c H^{(1)} \left| \psi_{\alpha}^{(0)} \right\rangle$$

• where P_c is the projector on unoccupied states and:

$$H^{(1)} = T^{(1)} + V_{ext}^{(1)} + V_{Hxc}^{(1)}, \quad V_{Hxc}^{(1)} = \frac{\partial}{\partial\lambda} \frac{\delta E_{Hxc}}{\delta n(\mathbf{r})} \bigg|_{n^{(0)}} + \int \frac{\delta^2 E_{Hxc}}{\delta n(\mathbf{r}) \delta n(\mathbf{r}')} n^{(1)}(\mathbf{r}') d\mathbf{r}',$$
$$n^{(1)}(\mathbf{r}) = \sum_{\alpha}^{\text{occ}} [\psi_{\alpha}^{*(1)}(\mathbf{r}) \psi_{\alpha}^{(0)}(\mathbf{r}) + \psi_{\alpha}^{*(0)}(\mathbf{r}) \psi_{\alpha}^{(1)}(\mathbf{r})].$$

- We consider here the following perturbations λ :
- An uniform and proportional deformation (strain).
 Notation:

A change of a homogeneous, static electric field.
 Notation:

 $X \xrightarrow{\text{field } \mathcal{E}_j} X^{(\mathcal{E}_j)}$

Density-functional perturbation theory Response to homogeneous electric field

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

 These quantities are not accessible within the periodic boundary conditions.
 How to deal with that ?

ELECTRIC FIELD: LONG WAVELENGTH LIMIT

Standard approach to deal with the periodicity issue...

Electric field potential:

$$V_{\mathcal{E}} = \vec{\mathcal{E}} \cdot \vec{\mathbf{r}} = \sum_{j} \mathcal{E}_{j} r_{j} = \sum_{j} \mathcal{E}_{j} |\mathbf{r}\rangle_{j} \langle \mathbf{r}| = \sum_{j} \mathcal{E}_{j} r_{j} |\mathbf{r}\rangle \langle \mathbf{r}|$$

We deduce:

$$\frac{\partial \mathcal{H}}{\partial \mathcal{E}_j} = r_j |\mathbf{r}\rangle \langle \mathbf{r}|$$

• Key idea : replace the position operator r_j by: $r_j = \lim_{q_j \to 0} \left(\frac{1}{2iq_j} \left(e^{iq_jr_j} - e^{-iq_jr_j} \right) \right)$

$$\frac{\partial \mathcal{H}}{\partial \mathcal{E}_{j}} = \lim_{q_{j} \to 0} \left(\frac{1}{2iq_{j}} \left(e^{iq_{j}r_{j}} |\mathbf{r}\rangle \langle \mathbf{r}| - e^{-iq_{j}r_{j}} |\mathbf{r}\rangle \langle \mathbf{r}| \right) \right)$$

Using: $\frac{\partial \mathcal{H}_{\mathbf{k},\mathbf{k}\neq\mathbf{q}}}{\partial \mathcal{E}} |u_{n,\mathbf{k}\neq\mathbf{q}}\rangle \equiv e^{-i(\mathbf{k}\neq\mathbf{q})\mathbf{r}} |\mathbf{r}\rangle\langle\mathbf{r}|e^{i(\mathbf{k}\neq\mathbf{q})\mathbf{r}'}|u_{n,\mathbf{k}\neq\mathbf{q}}\rangle = |u_{n,\mathbf{k}\neq\mathbf{q}}\rangle$

We deduce:

$$\frac{\partial \mathcal{H}_{\mathbf{k},\mathbf{k}}}{\partial \mathcal{E}} |u_{n,\mathbf{k}}\rangle = \lim_{\mathbf{q}\to 0} \frac{1}{2iq} \left(\frac{\partial \mathcal{H}_{\mathbf{k},\mathbf{k}-\mathbf{q}}}{\partial \mathcal{E}} |u_{n,\mathbf{k}-\mathbf{q}}\rangle - \frac{\partial \mathcal{H}_{\mathbf{k},\mathbf{k}+\mathbf{q}}}{\partial \mathcal{E}} |u_{n,\mathbf{k}+\mathbf{q}}\rangle \right)$$

$$= -i \lim_{q\to 0} \left(\frac{|u_{n,\mathbf{k}-\mathbf{q}}\rangle - |u_{n,\mathbf{k}+\mathbf{q}}\rangle}{2q} \right)$$

Going to the limit:

$$\frac{\partial \mathcal{H}_{\mathbf{k},\mathbf{k}}}{\partial \mathcal{E}}|u_{n,\mathbf{k}}\rangle = i\frac{d|u_{n,\mathbf{k}}\rangle}{d\mathbf{k}} \qquad \text{Periodic part}$$
of WF

$$\frac{\partial \mathcal{H}_{\mathbf{k},\mathbf{k}}}{\partial \mathcal{E}} |u_{n,\mathbf{k}}\rangle = i \overrightarrow{\nabla_{\mathbf{k}}} |u_{n,\mathbf{k}}\rangle$$

- Applying the 1st-order electric field Hamiltonian on a wave function is identical as applying the gradient with respect to k
- The treatment of homogeneous electric field is thus mapped onto the original periodic system.

 The derivative of the wave function with respect to k can be computed within the DFPT formalism,
 Solving the Sternheimer equation:

$$P_{c\mathbf{k}}\left(H^{(0)} - \varepsilon_{n,\mathbf{k}}^{(0)}\right)P_{c\mathbf{k}}|\psi_{n,\mathbf{k}}^{(\mathbf{k})}\rangle = -P_{c\mathbf{k}} \mathbf{H}^{(\mathbf{k})}|\psi_{n,\mathbf{k}}^{(0)}\rangle$$

- Note that 1st-order Hamiltonian H^(k) is non self-consistent The density does not depend on k
- ABINIT input flag : rfddk
 Need iscf=-3 (non-self-consistent computation)
- 1st-order wave function is saved in a "DDK" file that can be used in a response to electric field DFPT run.

WHAT CAN WE COMPUTE WITH ELECTRIC FIELD 1ST-ORDER WF?

- Electronic part of dielectric tensor
 - Proportionnality coefficient between polarization P_{γ} and electric field

$$P_{\gamma} = -\frac{1}{V} \frac{\partial E}{\partial \mathcal{E}_{\gamma}}$$

• Linked to a second derivative of total energy

$$\varepsilon_{\gamma\nu}^{\infty} = \delta_{\gamma\nu} + 4\pi \frac{\partial P_{\gamma}}{\partial \mathcal{E}_{\nu}}$$
$$\varepsilon_{\gamma\nu}^{\infty} = \delta_{\gamma\nu} - \frac{4\pi}{V} \frac{\partial^2 E}{\partial \mathcal{E}_{\gamma} \partial \mathcal{E}_{\nu}}$$

- Born effective charges
 - Proportionality coefficient:
 - between polarisation and atomic displacement
 - between force and electric field
 - Linked to a **mixed** second derivative of total energy

- Piezoelectric tensor
 - Proportionality coefficient:
 - between polarisation and strain
 - between stress and electric field
 - Linked to a **mixed** second derivative of total energy

$$\begin{aligned} \boldsymbol{e}_{\alpha\beta\gamma} &= -\frac{\partial P_{\alpha}}{\partial \boldsymbol{\mathcal{E}}_{\beta\gamma}} \bigg|_{\boldsymbol{\mathcal{E}}=-\boldsymbol{\Omega}} \frac{\partial \boldsymbol{\sigma}_{\beta\gamma}}{\partial \boldsymbol{\mathcal{E}}_{\alpha}} \\ \boldsymbol{e}_{\alpha\beta\gamma} &= -\frac{\partial^{2} E}{\partial \boldsymbol{\mathcal{E}}_{\alpha}\partial \boldsymbol{\mathcal{E}}_{\beta\gamma}} \end{aligned}$$

ELECTRIC FIELD PERTURBATION: VARIATIONAL EXPRESSION OF SECOND-ORDER ENERGY

- To get 2nd-order total energy, just replace 1st-order Hamitlonian $H^{(\mathcal{E})}$ by its expression depending on $i \nabla_k$
- Here example of a mixed perturbation electric field + λ_1

$$\begin{split} \frac{\partial^{2} E_{var}}{\partial \lambda_{1} \mathcal{E}_{j}} =& 2 \bigg[\frac{\Omega_{0}}{(2\pi)^{3}} \int d\mathbf{k} \sum_{n} \Big(\langle \psi_{n,\mathbf{k}}^{(0)} | \frac{\partial^{2} \mathcal{H}}{\partial \lambda_{1} \partial \mathcal{E}_{j}} \Big|_{\psi_{n}^{(0)}} |\psi_{n,\mathbf{k}}^{(0)} \rangle + \langle \psi_{n,\mathbf{k}}^{(\lambda_{1})} | \mathcal{H}^{(0)} - \epsilon_{n}^{(0)} | \psi_{n,\mathbf{k}}^{(\mathcal{E}_{j})} \rangle \\ &+ \langle \psi_{n,\mathbf{k}}^{(\lambda_{1})} | i \frac{d}{dk_{j}} |\psi_{n,\mathbf{k}}^{(0)} \rangle + \langle \psi_{n,\mathbf{k}}^{(0)} | \frac{\partial \mathcal{H}}{\partial \lambda_{1}} \Big|_{\psi_{n}^{(0)}} |\psi_{n,\mathbf{k}}^{(\mathcal{E}_{j})} \rangle) \Big) \\ &+ \frac{1}{2} \int_{\Omega} \frac{dV_{xc}}{d\rho} \Big|_{\rho^{(0)}} \rho^{(\lambda_{1})}(\mathbf{r}) \rho^{(\mathcal{E}_{j})}(\mathbf{r}) d\mathbf{r} + 2\pi\Omega \sum_{\mathbf{G}\neq 0} \frac{\rho^{(\lambda_{1})}(\mathbf{G}) \rho^{(\mathcal{E}_{j})}(\mathbf{G})}{G^{2}} \bigg] \end{split}$$

ELECTRIC FIELD PERTURBATION: MIXED DERIVATIVES NON-VARIATIONAL EXPRESSION OF SECOND-ORDER ENERGY

- To get non-variational expression of 2nd-order total energy, just suppose that one of the two 1st-order wave function is zero.
- This expression is non-stationary (i.e., 1st-order in convergence errors).
- We obtain two different expressions.

$$\frac{\partial^{2} E_{nonvar}}{\partial \lambda_{1} \mathcal{E}_{j}} = 2 \frac{\Omega_{0}}{(2\pi)^{3}} \int d\mathbf{k} \sum_{n} \langle \psi_{n,\mathbf{k}}^{(\lambda_{1})} | i \frac{d}{dk_{j}} | \psi_{n,\mathbf{k}}^{(0)} \rangle$$
$$\frac{\partial^{2} E_{nonvar}}{\partial \mathcal{E}_{j} \lambda_{1}} = 2 \frac{\Omega_{0}}{(2\pi)^{3}} \int d\mathbf{k} \sum_{n} \langle \psi_{n,\mathbf{k}}^{(0)} | \frac{\partial \mathcal{H}}{\partial \lambda_{1}} \Big|_{\psi_{n}^{(0)}} | \psi_{n,\mathbf{k}}^{(\mathcal{E}_{j})} \rangle$$


```
# First dataset : Self-consistent run
# Second dataset : Non-self-consistent run for full k point set
# Third dataset : d/dk response calculation
 getwfk3 -1
                        # Uses as input the output wf of the previous dataset
 getden3 1
  rfddk3 1
                        # Activate the calculation of the d/dk perturbation
                        # We can also use rfelfd=2
   iscf3 -3
                         # The d/dk perturbation must be treated
                         # in a non-self-consistent way
   rfdir3 111
                        # Directions for perturbation
# Fourth dataset : Response Function calculation : electric field perturbation
                         # Uses as input wfs the output wfs of the dataset 1
 getwfk4
           -2
 getddk4 -1
                        # Uses as input ddk wfs the output of the dataset 3
 rfelfd4 3
                        # Activate the the electric field perturbation
  rfdir4 111
                        # All directions are selected. However, symmetries
                         # will be used to decrease the # of pert.
# Common data
 nqpt 1 qpt 0.0 0.0 0.0 # This is a calculation at the Gamma point
                         # Generation of k points, using only the TR symmetry
 kptopt
          2
```


Test case: AlAs crystal

```
Perturbation wavevector (in red.coord.) 0.000000 0.000000 0.000000
Perturbation : derivative vs k along direction 1
[...]
iter 2DEtotal(Ha) deltaE(Ha) residm vres2
-ETOT 1 -8.3114099083037 -8.311E+00 2.709E-02 0.000E+00
ETOT 2 -8.3153468866281 -3.937E-03 1.678E-05 0.000E+00
ETOT 3 -8.3153482602104 -1.374E-06 4.304E-09 0.000E+00
ETOT 4 -8.3153482610322 -8.218E-10 6.755E-12 0.000E+00
ETOT 5 -8.3153482610330 -8.296E-13 9.994E-15 0.000E+00
ETOT 6 -8.3153482610330 3.375E-14 1.690E-17 0.000E+00
ETOT 7 -8.3153482610329 1.599E-14 2.558E-20 0.000E+00
ETOT 8 -8.3153482610329 8.882E-15 9.941E-23 0.000E+00
At SCF step 8 max residual= 9.94E-23 < tolwfr= 1.00E-22 =>converged.
[...]
Eight components of 2nd-order total energy (hartree) are
1,2,3: Oth-order hamiltonian combined with 1st-order wavefunctions
    kin0= 2.21582275E+01 eigvalue= -1.19796310E+00 local= -1.73372853E+01
4,5,6: 1st-order hamiltonian combined with 1st and 0th-order wfs
    kin1= -1.68814512E+01 Hartree= 0.0000000E+00
                                                       x_{C} = 0.000000E + 00
7,8,9: eventually, occupation + non-local contributions
   edocc= 0.0000000E+00
                             enl0= 4.69236920E+00 enl1= 2.50754707E-01
1-9 gives the relaxation energy (to be shifted if some occ is (=2.0))
  erelax= -8.31534826E+00
 No Ewald or frozen-wf contrib.: the relaxation energy is the total one
2DEtotal= -0.8315348261E+01 Ha. Also 2DEtotal= -0.226272133461E+03 eV
   ( non-var. 2DEtotal : -8.3153482610E+00 Ha)
[...]
respfn : d/dk was computed, but no 2DTE, so no DDB output.
```


Diel	ectric j1	ter	n <mark>sor,</mark> j2	in cartesian coordinates, matrix element	
dir	pert	dir	pert	real part imaginary	part
1	4	1	4	9.7606052146	-0.000000000
1	4	2	4	-0.000000000	-0.000000000
1	4	3	4	-0.000000000	-0.000000000
2	4	1	4	-0.000000000	-0.000000000
2	4	2	4	9.7606052146	-0.000000000
2	4	3	4	-0.000000000	-0.000000000
3	4	1	4	-0.000000000	-0.000000000
3	4	2	4	-0.000000000	-0.000000000
3	4	3	4	9.7606052146	-0.000000000

Effe	ctive	cha	rges, in	cartesian coordinates,	
(fro	om ele	ectr	ic field	response)	
if	spec	ifie	d in the	inputs, asr has been imposed	
	j1		j2	matrix element	
dir	pert	dir	pert	real part imaginary part	
1	1	1	4	2.1043565138 0.000000	000
2	1	1	4	-0.000000000 0.000000	000
3	1	1	4	0.00000000 0.000000	000
1	2	1	4	-2.1272284702 0.000000	000
2	2	1	4	0.00000000 0.000000	000
3	2	1	4	-0.00000000 0.000000	000
1	1	2	4	-0.000000000 0.000000	000
2	1	2	4	2.1043565138 0.000000	000
3	1	2	4	0.00000000 0.000000	000
1	2	2	4	0.00000000 0.000000	000
2	2	2	4	-2.1272284702 0.000000	000
3	2	2	4	-0.000000000 0.000000	000
1	1	3	4	0.00000000 0.000000	000
2	1	3	4	-0.000000000 0.000000	000
3	1	3	4	2.1043565138 0.000000	000
1	2	3	4	0.00000000 0.000000	000
2	2	3	4	-0.00000000 0.000000	000
3	2	3	4	-2.1272284702 0.000000	000

Density-functional perturbation theory Response to strain

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

NOTATION FOR ELASTIC PROPERTIES

Cartesian	ХХ	уу	ZZ	yz	XZ	ху	
Cartesian	1 1	11 22		23	13	1 2	
Voigt	1	2	3	4	5	6	
ipert, idir	natom+3, 1	natom+3, 2	natom+3, 3	natom+4, 1	natom+4, 2	natom+4, 3	

/1	$+ \epsilon_{11}$	ε_{12}	ε_{13}		$(1 + \varepsilon_1)$	$\varepsilon_6/2$	$\varepsilon_5/2$
	ε_{12}	$1 + \epsilon_{22}$	ε ₂₃	=	$\varepsilon_6/2$	$1 + \varepsilon_2$	$\varepsilon_4/2$
	ε_{13}	E ₂₃	$1 + \varepsilon_{33}$	'	$\langle \varepsilon_5/2$	$\varepsilon_4/2$	$1 + \varepsilon_3 /$

- Only the symmetric part of the strain tensor matters.
 Antisymmetric strains are simply rotations.
- In ABINIT, all these forms are used at various places internally and in the output.
- Strain and related properties are expressed in cartesian coordinates throughout ABINIT.
 Other perturbations are expressed in reduced coordinates.

- Stress is ground-state property, Output for for all ABINIT GS runs.
- Can be used as a "force" to optimize unit cell size and shape along with internal atomic coordinates.
- Numerical differentiation by $\mathcal{E}_{\alpha\beta}$ yields elastic tensor.

 Uniform strain changes the positions of the atomic potentials proportionally to their distances from the origin:

$$V(\mathbf{r}) = \sum_{Cell \mathbf{R}} \sum_{Atom \tau} V_{\tau} [\mathbf{r} - \boldsymbol{\tau} - \mathbf{R}]$$

$$\xrightarrow{strain \varepsilon} \sum_{Cell \mathbf{R}} \sum_{Atom \tau} V_{\tau} [\mathbf{r} - (1 + \varepsilon)\boldsymbol{\tau} - (1 + \varepsilon)\mathbf{R}]$$

- This causes unique problems for perturbation expansions:
 - From the point of view of a single unit cell, strain changes the periodic boundary conditions, so wave functions of the strained lattice cannot be expanded in terms of those of the unstrained lattice.
 - Discretization grids change under deformation : take into account a contribution from the derivative of the grid?

"Elegant" formulation proposed by Hamann et al., PRB 71, 035117 (2005)

- Every lattice, unstrained or strained, is a unit cube in reduced coordinates.
- Primitive real and reciprocal lattice vectors define the transformations:

$$X_{\alpha} = \sum_{i} R_{\alpha i}^{P} \tilde{X}_{i}, \quad K_{\alpha} \equiv (k_{\alpha} + G_{\alpha}) = \sum_{i} G_{\alpha i}^{P} \tilde{K}_{i}, \quad \sum_{\alpha} R_{\alpha i}^{P} G_{\alpha j}^{P} = 2\pi \delta_{ij}$$
- Cartesian indices $\alpha, \beta, \dots = 1, 3$ and reduced indices $i, j, \dots = 1, 3$

- Every term in the plane-wave DFT functional can be expressed in terms of dot products and the unit cell volume Ω.
- Dot products and **Ω** in reduced coordinates are computed with metric tensors:

$$\mathbf{X}' \cdot \mathbf{X} = \sum_{ij} \tilde{X}'_i \Xi_{ij} \tilde{X}_j, \quad \mathbf{K}' \cdot \mathbf{K} = \sum_{ij} \tilde{K}'_i \Upsilon_{ij} \tilde{K}_j, \quad \Omega = (\det[\Xi_{ij}])^{1/2}, \quad \mathbf{K} \cdot \mathbf{X} = \tilde{\mathbf{K}} \cdot \tilde{\mathbf{X}}$$

- This trick reduces strain to a "simple" parameter of a density functional whose wave functions have invariant boundary conditions.
- The only strain dependence of DFT functional is in the metric tensors.

Strain derivatives of the metric tensor are straightforward.

$$\Xi_{ij}^{(\alpha\beta)} = \frac{\partial \Xi_{ij}}{\partial \varepsilon_{\alpha\beta}} = R_{\alpha i}^{P} R_{\beta j}^{P} + R_{\beta i}^{P} R_{\alpha j}^{P}$$
$$\Xi_{ij}^{(\alpha\beta\gamma\delta)} = \frac{\partial^{2} \Xi_{ij}}{\partial \varepsilon_{\alpha\beta} \partial \varepsilon_{\gamma\delta}} = \delta_{\alpha\gamma} \left(R_{\beta i}^{P} R_{\delta j}^{P} + R_{\delta i}^{P} R_{\beta j}^{P} \right) + \delta_{\beta\gamma} \left(R_{\alpha i}^{P} R_{\delta j}^{P} + R_{\delta i}^{P} R_{\alpha j}^{P} \right)$$

In cartesian coordinates, volume Ω has simple derivatives:

$$\frac{\partial\Omega}{\partial\varepsilon_{\alpha\beta}} = \delta_{\alpha\beta} \ \Omega \qquad \frac{\partial^2\Omega}{\partial\varepsilon_{\alpha\beta}\partial\varepsilon_{\gamma\delta}} = \delta_{\alpha\beta} \ \delta_{\gamma\delta} \ \Omega$$

Consequence : derivative of integrals over the volume:

$$\frac{\partial}{\partial \varepsilon_{\alpha\beta}} \int_{\Omega} f(\mathbf{r}) d\mathbf{r} = \int_{\Omega} \frac{\partial f(\mathbf{r})}{\partial \varepsilon_{\alpha\beta}} d\mathbf{r} + \delta_{\alpha\beta} \int_{\Omega} f(\mathbf{r}) d\mathbf{r}$$

STRAIN PERTURBATION: VARIATIONAL EXPRESSION FOR SECOND-ORDER ENERGY

$$E_{el}^{(2)}\left\{\psi^{(0)};\psi^{(1)}\right\} = \sum_{\alpha}^{occ} \left[\left\langle\psi_{\alpha}^{(1)} \middle| \frac{T^{(0)}}{1} + \frac{V_{Har+loc}^{(0)}}{3} + \frac{V_{non-loc}^{(0)}}{9} - \frac{\varepsilon_{\alpha}^{(0)}}{2} \middle|\psi_{\alpha}^{(1)}\right\rangle \\ + \left\langle\psi_{\alpha}^{(1)} \middle| \frac{T^{(1)}}{1} + \frac{V_{loc}^{(1)}}{4} + \frac{V_{non-loc}^{(1)}}{10} + \frac{V_{Har}^{(1)}}{4} + \frac{V_{xc}^{(1)}}{4} \middle|\psi_{\alpha}^{(0)}\right\rangle \\ + \left\langle\psi_{\alpha}^{(0)} \middle| \frac{T^{(1)}}{1} + \frac{V_{loc}^{(1)}}{4} + \frac{V_{non-loc}^{(1)}}{4} + \frac{V_{Har}^{(1)}}{4} + \frac{V_{xc}^{(1)}}{4} \middle|\psi_{\alpha}^{(1)}\right\rangle \\ + \left\langle\psi_{\alpha}^{(0)} \middle| \frac{T^{(2)}}{2} + \frac{V_{loc}^{(2)}}{4} + \frac{V_{non-loc}^{(2)}}{4\lambda^{2}} \middle|_{n^{(0)}} + \frac{1}{2}\frac{d^{2}E_{Ion-Ion}}{d\lambda^{2}} \\ + \frac{1}{2}\frac{d^{2}E_{Har}}{d\lambda^{2}} \middle|_{n^{(0)}} + \frac{1}{2}\frac{d^{2}E_{xc}}{d\lambda^{2}} \middle|_{n^{(0)}} + \frac{1}{2}\frac{d^{2}E_{Ion-Ion}}{d\lambda^{2}} \\ - \frac{11}{4}\frac{16}{4}\frac{16}{4}\frac{16}{4}\frac{17}{4}\frac{16}{4}\frac{17}{4}\frac{16}{4}\frac{17}{4}$$

- All these terms can be found in ABINIT output file.
- There are additional terms in case of Projector Augmented-Wave approach.
- ABINIT computes also a non-variational expression for E⁽²⁾.
 If convergence is reached it has to be equal to the variational one.

ABINIT OUTPUT: VARIATIONAL EXPRESSION FOR SECOND-ORDER ENERGY

Seventeen components of 2nd-order total energy (hartree) are 1,2,3: 0th-order hamiltonian combined with 1st-order wavefunctions 5.45759309E+00 eigvalue= -4.64795287E-01 local= -3.43266023E+00kin0= 4,5,6,7: 1st-order hamiltonian combined with 1st and 0th-order wfs loc psp = 1.38229987E+00 Hartree= 1.08631683E+00 xc= -4.86887660E-01kin1 = -5.29050571E + 008,9,10: eventually, occupation + non-local contributions edocc= 0.0000000E+00 en10= 2.22543400E+00 en11= -4.92230408E+001-10 gives the relaxation energy (to be shifted if some occ is (=2.0)) erelax= -4.44550918E+00 11,12,13 Non-relaxation contributions : frozen-wavefunctions and Ewald fr.hart = -5.37096135E - 01 fr.kin = 4.17616081E + 00 fr.loc = 2.61961436E + 0014,15,16 Non-relaxation contributions : frozen-wavefunctions and Ewald fr.nonl = 3.24102985E+00 fr.xc = -2.30295282E-01 Ewald = -3.20692684E+00**17** Non-relaxation contributions : pseudopotential core energy pspcore= -2.77394479E-01 Resulting in : 2DEtotal= 0.1339583111E+01 Ha. Also 2DEtotal= 0.364519096295E+02 eV (2DErelax= -4.4455091757E+00 Ha. 2DEnonrelax= 5.7850922867E+00 Ha) (non-var. 2DEtotal : 1.3395938195E+00 Ha)

We need second derivative with respect to strain $\varepsilon_{\alpha\beta}$, electric field \mathcal{E}_i and atomic coordinates $\tau_{\kappa i}$ to obtain:

Interatomic force constants Clamped-atom elastic tensor Clamped-atom dielectric tensor $\frac{\partial^{2} E}{\partial \tau_{\kappa i} \partial \tau_{\kappa' j}}$ $\frac{\partial^{2} E}{\partial \varepsilon_{\alpha \beta} \partial \varepsilon_{\gamma \delta}}$ $\frac{\partial^{2} E}{\partial \varepsilon_{j} \partial \varepsilon_{j'}}$

• We need combinations of strain $\mathcal{E}_{\alpha\beta}$, electric field \mathcal{E}_{j} and atomic coordinates $\tau_{\kappa i}$ derivatives to obtain:

Force-response internal strain tensor $\partial^2 E / \partial \varepsilon_{\alpha\beta} \partial \tau_{\kappa i}$ Clamped-atom piezoelectric tensor $\partial^2 E / \partial \varepsilon_{\alpha\beta} \partial \mathcal{E}_j$ Born effective charges $\partial^2 E / \partial \tau_{\kappa i} \partial \mathcal{E}_j$

STRAIN PERTURBATION: NON-VARIATIONAL EXPRESSION FOR SECOND-ORDER ENERGY

- Calculating mixed 2nd derivatives of the energy with respect to pairs of perturbations.
- By the "2n+1" theorem, these only require one set of 1st-order wave functions.
- This expression is non-stationary.
 (i.e., 1st-order in convergence errors)

$$\begin{split} E_{el}^{(\lambda_1\lambda_2)} &= \sum_{\alpha}^{\mathrm{occ}} \left\langle \psi_{\alpha}^{(\lambda_2)} \left| \left(T^{(\lambda_1)} + V_{ext}^{(\lambda_1)} + V_{Hxc0}^{(\lambda_1)} \right) \right| \psi_{\alpha}^{(0)} \right\rangle \\ &+ \sum_{\alpha}^{\mathrm{occ}} \left\langle \psi_{\alpha}^{(0)} \left| \left(T^{(\lambda_1\lambda_2)} + V_{ext}^{(\lambda_1\lambda_2)} \right) \right| \psi_{\alpha}^{(0)} \right\rangle + \frac{1}{2} \frac{\partial^2 E_{Hxc}}{\partial \lambda_1 \partial \lambda_2} \right|_{n^{(0)}}, \end{split}$$

- Strain atomic coordinate derivatives
 - Use 1st-order strain wave functions $\psi_{\mathbf{k}m}^{(\alpha\beta)}$
 - Use 1st-order atomic-coordinate Hamiltonian $H^{(\tau_{\kappa i})}$
 - Calculate non-variational expression of *E*⁽²⁾ All terms: kinetic, local, hartree, XC, non-local

Strain – electric field derivatives

 Use special simpler non-variational expression with 1storder wave–vector wave functions and 1st-order strain wave functions:

$$\frac{\partial^2 E}{\partial \varepsilon_{\alpha\beta} \partial \varepsilon_j} = 2 \frac{\Omega}{(2\pi)^3} \int_{BZ} d\mathbf{k} \sum_m \left\langle i \psi_{\mathbf{k}m}^{(k_j)} \middle| \psi_{\mathbf{k}m}^{(\alpha\beta)} \right\rangle$$

INDEX TO ABINIT RF PERTURBATIONS

ABINIT INPUT FILE FOR RF RUN WITH STRAIN

```
# First dataset : Self-consistent run
# Second dataset : Non-self-consistent run
#
                  for full k point set
# Third dataset : d/dk response calculation
                  #this section is omitted if
 getwfk3 2
                  #only the elastic tensor is
 getden3 1
                  #wanted
  iscf3 -3
 rfelfd3 2
  rfdir3 1 1 1
# Fourth dataset : phonon, strain, and homogeneous
                  electric field response
#
 diemix4 0.85
 diemac4 1.0
 getwfk4 2
 getddk4 3
                  #omitted for ELT only
   iscf4 3
 rfelfd4 3
                  #omitted for ELT only
rfatpol4 1 2
 rfdir4 1 1 1
 rfphon4 1
 rfstrs4 3
                 #only this is new for strain
# Common data
                  #stresses and forces should
                  #(in general) be relaxed
    nqpt 1
    qpt 0 0 0
                  #beforehand
```


STRAIN PERTURBATION: ABINIT OUTPUT FILE

- With natom=2, electric field ipert=4 and strain ipert=5
- Only a sample of the complete matrix shown
- Careful: mix of reduced and Cartesian coordinates!

2nd-c	2nd-order matrix (non-cartesian coordinates, masses not included,										
ası	not	incl	Luded)							
cart	cartesian coordinates for strain terms (1/ucvol factor										
foi	for elastic tensor components not included)										
-	j1	-	j2	matrix	element						
dir	pert	dir	pert	real part	imaginary part						
1	1	2	2	-2.8200006186	0.00000000						
-	-	-	-	2.0200000000							
1	1	3	2	-2.8654826400	interatomic force constant (red-red)						
1	1	1	4	-4.1367712586	Born effective charge (red-red)						
					· · · · _ · _ · _ · _						
1	1	2	5	-0.0238530938	internal strain (red-cart)						
1	4	3	4	46.0269881204	dielectric tensor (red-red)						
_	-	-	-		,						
1	4	3	5	-0.2214090328	piezoelectric tensor (red-cart)						
1	5	2	6	-0.0103809572	elastic tensor (cart-cart)						

STRAIN PERTURBATION: ABINIT OUTPUT FILE

Elastic

	Rigid-atom elastic tensor , in cartesian coordinates,										
		j	1 :	j2 mat	rix element						
	dir	pert	dir per	t real part	imaginary part						
1	7	1	7	0.0056418387	0.000000000						
1	7	2	7	0.0013753709	0.000000000						
1	7	3	7	0.0007168444	0.000000000						
1	7	1	8	0.000000000	0.000000000						
1	7	2	8	0.000000000	0.000000000						
1	7	3	8	0.000000006	0.000000000						
2	7	1	7	0.0013753707	0.000000000						
2	7	2	7	0.0056418385	0.000000000						

Piezoelectric

R	Rigid-atom proper piezoelectric tensor, in cartesian										
	coordinates,										
		J	T	2ر	Ille	atrix element					
	dir	pert	dir pe	rt re	real part imaginary par						
1	6	1	7	0.0	000000000	0.00000000					
1	6	2	7	0.0	000000000	0.00000000					
1	6	3	7	0.0	000000000	0.00000000					
1	6	1	8	0.0	000000000	0.00000000					
1	6	2	8	0.0	076114623	0.00000000					
1	6	3	8	0.0	000000000	0.000000000					
2	6	1	7	0.0	000000000	0.00000000					
2	6	2	7	0.0	000000000	0.000000000					

Internal strain

Intern	Internal strain coupling parameters, in cartesian coordinates,									
	ze	ero av	veraç	ge net	force deriv. ha	as been imposed				
		j	L	j2	mat	rix element				
	dir	pert	dir	pert	real part	imaginary part				
1	1	1	7		0.1249319229	0.000000000				
1	1	2	7		-0.1249319272	0.000000000				
1	1	3	7		0.000000000	0.000000000				
1	1	1	8		0.000000000	0.000000000				
1	1	2	8		-0.1016111210	0.000000000				
1	1	3	8		0.000000003	0.000000000				
2	1	1	7		0.000000000	0.000000000				
2	1	2	7		0.000000000	0.000000000				
2	1	3	7		0.000000000	0.000000000				
2	1	1	8		-0.1016109573	0.000000000				
2	1	2	8		0.000000000	0.000000000				
2	1	3	8		-0.1249319425	0.000000000				

- We are treating here strain as an independent variable, but, in a laboratory, only stress is applied.
- Strain will change the reduced atomic coordinates, not just the metric tensors.
- Atomic relaxation makes modest changes the the elastic constants for "normal" solids, huge changes for special cases (molecular solids).
- There are large relaxation changes in the piezoelectric constants for most piezoelectric materials.

- Introduce a model energy function quadratic in atomic displacements $\Delta \tau_{\kappa i}$, strain $\varepsilon_{\alpha\beta}$, and electric field \mathcal{E}_i :

$$H(\Delta \tau, \varepsilon_{\alpha\beta}, \mathcal{E}) = (\Delta \tau \ \mathcal{E} \ \mathcal{E}) \begin{bmatrix} (-\mathbf{F}/\Omega) \\ \mathbf{\sigma} \\ -\mathbf{P} \end{bmatrix} + \begin{pmatrix} \mathbf{K}/\Omega & -\mathbf{\Lambda}/\Omega & -\mathbf{Z}/\Omega \\ -\mathbf{\Lambda}^T/\Omega & \mathbf{C} & -e \\ -\mathbf{Z}^T/\Omega & e^T & \chi \end{pmatrix} \begin{pmatrix} \Delta \tau \\ \mathcal{E} \\ \mathcal{E} \end{pmatrix} \end{bmatrix}$$

« Clamped » quantities:,

ATOMIC RELAXATION

$$C_{\alpha\beta\delta\gamma} = \bar{C}_{\alpha\beta\delta\gamma} - \Omega^{-1}\Lambda_{\kappa k\alpha\beta}(K^{-1})_{\kappa k\kappa' k'}\Lambda_{\kappa' k'\gamma\delta},$$

$$e_{j\alpha\beta} = \bar{e}_{j\alpha\beta} + \Omega^{-1}Z_{\kappa kj}(K^{-1})_{\kappa k\kappa' k'}\Lambda_{\kappa' k'\alpha\beta},$$

$$\chi_{jj'} = \bar{\chi}_{jj'} + \Omega^{-1}Z_{\kappa kj}(K^{-1})_{\kappa k\kappa' k'}Z_{\kappa' k' j'}.$$

- We assume the forces are zero (relaxed structure).
- Strain and electric field 2nd derivatives of *H* yield the relaxed-atom elastic piezoelectric and dielectric tensors.
- *K*⁻¹ is the pseudo-inverse of the interatomic force constant matrix.

- Need to use anaddb script as a post-processor of ABINIT results
- All the needed 2nd derivatives must be present in the _DDB file (from several RF ABINIT runs).
- Results are converted to conventional units rather than atomic units.
- Various other tensors corresponding such as fixed or zero polarization or stress, etc. — can be calculated using the same approach.
- See elaflag, instrflag, dieflag, piezoflag, polflag in the anaddb help file.

Input file

```
dieflag 3 !flag for relaxed-ion dielectric tensor
  elaflag 3 !flag for the elastic tensor
piezoflag 3 !flag for the piezoelectric rensor
instrflag 1 !flag for the internal strain tensor
!the effective charge part
     asr 1
   chneut 1
!Wavevector list number 1
   nph1l 1
   qph11 0.0 0.0 0.0 1.0
!Wave vector list no. 2
   nph21 1
   qph21 0.0 0.0 1.0 0.0
```


Output file

Elastic Tensor(relaxed ion)(Unit:10^2GP,VOIGT notation):										
1.2499151 0.6699976 0.6835944 0.0022847 -0.0113983 -0.0001512	0.6699976 1.6217899 0.5566207 0.0194005 -0.0055653 -0.0055915	0.6835944 0.5566207 1.5896839 -0.0207927 0.0107924 0.0080825	0.0022847 0.0194005 -0.0207927 0.6659339 0.0077398 -0.0056845	-0.0113983 -0.0055653 0.0107924 0.0077398 0.7283916 0.0014049	-0.0001512 -0.0055915 0.0080825 -0.0056845 0.0014049 0.7222881					
prope	er piezoelect 0.017146 0.008284 0.018820 -0.038721 -0.014240 0.015664	ric constant 694 0.0 454 0.0 065 0.0 154 -0.0 058 0.0 436 -0.0	cs(relaxed i 5107080 3716812 5180658 1245206 0757132 0054740	on) (Unit:c/m -0.00883676 -0.00810176 -0.00576393 0.01902693 -0.00294782 0.00218470	` 2)					

- Also in output
 - Clamped-ion versions of tensors in standard units
 - Clamped and relaxed compliance tensors
 - "Force-response" and "displacement response" internal strain tensors
 - More tensors corresponding to different boundary conditions
- An important check is that the tensors have symmetry appropriate to the point group of the material.

DFPT + strain + electric field Technical issues

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

Back to the basics:
 Stress-strain definition of elastic tensor is:

$$\sigma_{\alpha\beta} = C^{\rm ss}_{\alpha\beta\gamma\delta} \, \varepsilon_{\gamma\delta}$$

- Elastic tensor computed from DFPT
 - → "Proper" elastic tensor :

elasticity-oganov.pdf&vanderbilt-anaddb-notes.pdf in ~abinit/doc/theory

« PROPER » PIEZOELECTRIC TENSOR

The polarization P_{α} is defined within a "polarization quantum" due to the freedom to choose the phase of *Bloch* wave functions. We have different polarization "branches": $\mathbf{P}^{(b')} = \mathbf{P}^{(b)} + \frac{e}{O}\mathbf{R}$

Strain-induced changes:

$$d\mathbf{P}^{(b')} = d\mathbf{P}^{(b)} - \frac{e}{\Omega^2}\mathbf{R}d\Omega + \frac{e}{\Omega}d\mathbf{R}$$

The proper piezoelectric tensor is independent of the branch:

$$e_{\alpha\beta\gamma}^{\text{Proper}} = e_{\alpha\beta\gamma} + \delta_{\beta\gamma}P_{\alpha} - \delta_{\alpha\beta}P_{\gamma}$$

Vanderbilt, J. Phys. Chem. Solids 61, 147 (2000)

Lattice vector

Numerous numerical issues

- Amplitude of increment of the finite differences (system dependent)
- Number of points in the finite difference scheme
- Changes of real space grid when manual deformation is applied
- Numerical scheme for real space integrals when the center moves
- Slow convergence of "finite electric field" computations (within "Berry phase" formalism")

FIG. 1. Convergence of the effective charges in AlAs with respect to the Brillouin zone sampling as obtained in both finite differences and in DFPT.

ABINIT School 2019 – Sept. 2-6, 2019

Martin, Torrent, Caracas, PRB 99, 094112 (2019)

- Al and AlAs crystals. Projector Augmented-Wave approach
- Ground state calculations of stress and polarization with clamped atomic coordinates
- Finite-difference d/dk for best consistency with polarization calculations
- 5-point numerical derivatives with strain increment 10⁻⁴

TABLE IV. Elastic tensor of fcc Al in GPa, obtained with DFPT and FD.								
Elastic constant C_{11} C_{12} C_{44}								
FD	114.36042	60.01343	34.00284					
DFPT	114.35981	60.01364	34.00364					
Exp. [29] 114.30 61.92 31.62								

TABLE I. Clamped-ion force-strain coupling parameters of AlAs in reduced coordinates, in Ha. Comparison of the numerical values obtained with DFPT and FD: $-\Omega \frac{\partial^2 E_{vol}}{\partial \tau_{ek} \partial \varepsilon_{\alpha\beta}}$ [Eq. (48)].

$\varepsilon_{lphaeta}$	к	k	FD+PAW	DFPT+PAW
1	Al	х	0.84452759	0.84452677
2	Al	х	-0.84452759	-0.84452679
3	Al	х	0.00000000	0.00000000
4	Al	х	-0.40239908	-0.40239911
5	Al	Х	- 0.69697561	- 0.69697569
6	Al	Х	-0.48758797	-0.48758777

	TABLE II.	Born	effective	charges	of	AlAs	in	units	of	charge
Eq	. (47)]. Cor	npariso	on betwee	en the two	o ne	onvaria	atio	nal ex	pre	essions,
Eqs	s. (30)–(32)	and E	q. (<mark>86</mark>), in	DFPT.						

κ	k	$-\Omegarac{\partial^2 E_{ m vol}}{\partial au_{kk}\partial ec{\mathcal{E}}_k}$	$-\Omega rac{\partial^2 E_{ m vol}}{\partial ec{\mathcal{E}}_k \partial au_{\kappa k}}$
Al	х	2.07482486	2.07482525
Al	у	2.07482486	2.07482525
Al	Z	2.22353351	2.22353327
As	х	-2.07485811	-2.07485849
As	У	-2.07485811	-2.07485849
As	Z	- 2.22341484	- 2.22341461

TABLE III. Piezoelectric tensor of AlAs in units of charge/Bohr² [Eq. (46)]. Comparison between the two nonvariational expressions, Eqs. (30)–(32) and Eq. (86), in DFPT.

$\varepsilon_{lphaeta}$	k	$-\frac{\partial^2 E_{\rm vol}}{\partial \varepsilon_{\alpha\beta} \partial \vec{\mathcal{E}_k}}$	$-\frac{\partial^2 E_{\rm vol}}{\partial \vec{\mathcal{E}}_k \partial \varepsilon_{\alpha\beta}}$
5	Х	0.01036757	0.01036757
4	У	0.01036986	0.01036831
1	Z	0.00645215	0.00645173
2	Z	0.00645215	0.00645173
3	Z	-0.00991493	-0.00991383

- The Hellmann-Feynman theorem (or 2N+1 theorem) is only valid for the complete basis set.
- If the plane wave basis set is not complete with respect to changes of the volume, the terms in theorem's expression containing derivatives of the wavefunction persist.
- Unless absolute convergence with respect to the basis set has been achieved - the diagonal components of the stress tensor are incorrect.

$$\frac{dE}{d\varepsilon_{\alpha\beta}} = \sum_{n} \frac{d}{d\varepsilon_{\alpha\beta}} \langle \psi_{n} | H | \psi_{n} \rangle$$
$$= \sum_{n} \left\langle \psi_{n} \Big| \frac{dH}{d\varepsilon_{\alpha\beta}} \Big| \psi_{n} \right\rangle + \epsilon_{n} \left(\frac{\left\langle \frac{d\psi_{n}}{d\varepsilon_{\alpha\beta}} \Big| \psi_{n} \right\rangle + \left\langle \psi_{n} \Big| \frac{d\psi_{n}}{d\varepsilon_{\alpha\beta}} \right\rangle}{\operatorname{zero if basis is complete}} \right)$$

- To avoid the *Pulay stress*, use of ecutsm ABINIT input variable is mandatory.
- It allows one to define an effective kinetic energy for plane waves, obtained by multiplying the kinetic energy by a smooth smearing function.
- Using a non-zero ecutsm, the total energy curves as a function of ecut can be smoothed, keeping consistency with the stress and automatically including the *Pulay stress*.
- The recommended value is 0.5 Ha.

See: Bernasconi et a., J. Phys. Chem. Solids 56, 501 (1995)

DFPT + strain + electric field Real applications

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

DFPT+STRAIN IN ABINIT – APPLICATION TO GEOPHYSICS

Impurities in iron at extreme conditions

- Earth inner core is made of iron and impurities
- It's real composition is unknow
- Observable: seismic waves, giving the sound velocity
- Try several chemical compositions, compute elastic tensor, deduce sound velocity...
 ... and compare with PREM model (Preliminary Reference Earth Model).

A. Martin, PhD thesis (2015)

$$G_v = \frac{(C_{11} + C_{22} + C_{33}) - (C_{12} + C_{13} + C_{23}) + 3(C_{44} + C_{55} + C_{66})}{15}$$

Densité (g/cm^3)

Commissariat à l'énergie atomique et aux énergies alternatives

DFPT+STRAIN IN ABINIT – APPLICATION TO GEOPHYSICS

Impurities in iron at extreme conditions

cea

A. Martin, PhD thesis (2015)

Try various simulation cells
 With impurities in substitution or interstitial

PAW formalism

Élément	[cœur]	valence
Н	[]	$1s^{1}$
С	$[1s^2]$	$2s^2 2p^2$
0	$[1s^2]$	$2s^2 2p^4$
Si	$[1s^22s^22p^6]$	$3s^2 3p^2$
S	$[1s^22s^22p^6]$	$3s^2 3p^4$
Fe	$[1s^22s^22p^6]$	$3s^2 3p^6 4s^1 3d^7$

Impurities in iron at extreme conditions

Simulation cell : Fe₁₆C

TABLE V. Relaxed-ion elastic tensors of $Fe_{16}C$ (in GPa) at 320 GPa. The comparison between the perturbative approach (DFPT) and the finite difference approach (FD) shows differences on the order of tens of MPa or less.

	C_{11}	C_{22}	C_{33}	C_{44}	C_{55}
FD	127.409	127.444	47.284	25.254	25.244
DFPT	127.428	127.428	47.295	25.244	25.244
	C_{66}	C_{12}	C_{13}	C_{14}	C_{56}
FD	41.037	45.339	31.510	-2.739	-2.739
DFPT	41.038	45.351	31.522	-2.739	-2.739

Martin, Torrent, Caracas, PRB 99, 094112 (2019)

Impurities in iron at extreme conditions

A. Martin, PhD thesis (2015)

15

Sound velocities

cea

Impurities in earth mantel

C27

A. Martin, PhD thesis (2015)

Elastic tensor of MgSiO₃ perovskite

TABLE VI. Elastic constants (in GPa) and sound velocities (in km/s) of MgSiO₃ perovskite at 0 GPa.

$\overline{C_{ij}}$	<i>C</i> ₁₁	<i>C</i> ₂₂	<i>C</i> ₃₃	C_{44}	C ₅₅	
DFPT+NC	512	579	488	213	181	
FD+PAW	482	549	457	201	176	
DFPT+PAW	482	549	457	201	176	
S.V. Sinogeikin (exp.)[31]	481	528	456	200	182	
Y.Haeri (exp.)[32]	482	537	485	186	186	
C_{ij}	C_{66}	C_{13}	C_{32}	C_{12}	V_p	V_s
DFPT+NC	166	153	167	162	11.21	6.63
FD+PAW	156	137	150	137	10.85	6.49
DFPT+PAW	156	137	150	137	10.85	6.49
S.V. Sinogeikin (exp.)[31]	147	139	146	125	10.84	6.47
Y.Haeri (exp.) [32]	147	147	146	144	11.04	6.57

Martin, Torrent, Caracas, PRB 99, 094112 (2019)

Impurities in earth mantel

A. Martin, PhD thesis (2015)

MgSiO₃ perovskite with Al impurities at 120GPa

Born effective charges

cea

Atome :	Х	у	Ζ
Al ₁	3,03	2,90	3,20
Al_2	2,80	2,91	2,82
Mg	2,03	1,85	2,13
Si	3,63	3,72	3,67
O ₁	-1,73	-1,53	-2,44
O ₂	-2,00	-2,12	-1,68
O3	-2,01	-2,08	-1,68

		•	
Al_1	2,97	2,90	3,20
Al_2	2,83	2,85	2,79
Mg	2,06	1,91	2,12
Si	3,59	3,77	3,69
O_1	-1,73	-1,51	-2,42
O ₂	-2,01	-2,06	-1,68
O ₃	-1,89	-2,02	-1,71

V

Ζ

(c) $Mg_{15}Si_{15}Al_2O_{48}$ configuration proche

ration	(d) $Mg_{15}Si_{15}Al_2O_{48}$	configuration	dis-
	tante		

Atome : x

WHAT ABOUT PERFORMANCES? DFPT+STRAIN VS FINITE DIFFERENCES

- Fe₁₆C unit cell at 320 Gpa, trigonal symmetry
- 7 independent elastic constants to compute
- *Curie* supercomputer (french TGCC computing center)
- 512 CPUs

Finite differences

- 5-point formula
- 29 independent structural relaxations
- 1400 CPU walltime hours per relaxation

Total: 40 000 CPU hours

DFPT

- 1 structural relaxation
- 1400 CPU walltime hours per relaxation
- 6 strain RF calculations (80 hours)

Total: 2 200 CPU hours

Ratio can change according to the number of symmetries...

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr

AND NOW... TRY IT!

- Response to electric field ans strain almost fully available in ABINIT
- ABINIT is the only DFT code giving access to an analytical calculation of elastic and piezoelectric tensors
- Easy to use (no q-points, etc.)
- Norm-conserving pseudo-potentials
 Projector Augmented-Wave (Elastic tensor+GGA not available within PAW)
- Try "Hands on" on Elastic Properties tutorial to learn more...

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr