DE LA RECHERCHE À L'INDUSTRIE

Practical Calculations of Phonons with Abinit

Boris Dorado

CEA, France

www.cea.fr

Abinit School 2019

- Phonons in a nutshell: compute derivatives of the total energy. Can be analytical or numerical.
- Analytical: solve the Sternheimer equation (aka the « derivative » of the Schrödinger equation). Density Functional Perturbation Theory, DFPT (Baroni *et al.*, Rev. Mod. Phys. 73, 515 (2001))
- Numerical: perform finite differences.
 Finite displacements.
- DFPT:
 - Pros:
 - * Analytical most accurate.
 - Calculations on primitive unit cells fastest.
 - Phonons calculated analytically on any **q** point not size dependent.
 - No size dependency defects, alloys, etc.
 - Cons:
 - The maths are ugly hinders implementation (electron correlations, spin-orbit coupling, etc.)
 - * No temperature effects extrapolation to finite T with (quasi)harmonic approximation.
 - * Not very useful for phases that are dynamically unstable at 0K.

DFPT vs TDEP

- Finite displacements:
 - Pros:
 - Conceptually simple: possible with any *ab initio* code.
 - Finite temperature effects (molecular dynamics)
 - Cons:
 - Numerical less accurate than DFPT.
 - Primitive cell point only. Other **q** points require (very) large supercells.
 - Supercell is be mapped back onto the primitive cell perfect crystals or substitutional defects.
 - * *Ab Initio* Molecular Dynamics (AIMD) can take months **computationally demanding**.

DFPT in Practice...

- Three main steps:
 - Ground State calculation:
 - Relevant keywords: tolwfr, nline, nnsclo, prtwf.
 - GS calculation must be VERY accurate (tolwfr 1e-20)
 - DFPT calculation at different q points:
 - Relevant keywords: rfphon, rfatpol, rfdir, qptopt, ngqpt.
 - Post-Processing
 - * mrgddb: merging of DDB files that contain the dynamical matrices at each qpoint.
 - anaddb: Extrapolation to other qpoints for the nice looking final spectrum (but anaddb can actually do plenty of cool stuff)
- Pro tip 1: in DFPT calculation, use a different dataset (ndtset) for each qpoint.
- \rightarrow Pro tip 2: The DFPT is the main calculation \rightarrow use dataset indexes only for the GS calculation.

Phonons in Al: the DFPT Datasets

These are the keywords that apply to all other dataset.

```
# Some useful stuff to avoid crashing when reading GS wavefunctions...
ecutsm 0.5
dilatmx 1.15
# SCF cycle
nstep 300
ecut 20
pawecutdg 20
tolvrs 1e-07
nband 4
# DFPT keywords
rfphon 1 # The perturbation is phonon-type
rfatpol 1 1 # Index of atoms that will be displaced
rfdir 1 1 1 # Directions of perturbations
iscf 7
               # As mentioned above, DFPT calcs use a different
                # SCF algorithm than GS calcs
qptopt 1  # q-point grid generation
ngqpt 4 4 4 # q-point grid
nshiftq 1 # Number of shifts of the q-point grid
shiftq 0 0 0 # Shift of the q-point grid
              # Each DFPT dataset will cover 1 q-point
ngpt 1
             # Starting q-point (0 because the 1st dataset is the GS calc)
iqpt: 0
                # q-point increment (1 because each dataset will compute 1 q-point)
iqpt+ 1
```


# ====================================				
# These are the keywords that apply to the 1st DATASET only.				
tolwfr1 1e-20	<pre># GS wavefunctions must be VERY well converged!</pre>			
nlinel 10 nnsclol 5	<pre># These two keywords will greatly help convergence # of the wavefunctions</pre>			
iscf1 17	# The GS calculation uses a different scf algorithm # (which is the default algorithm), unlike DFPT calcs			
getwfk1 0	# Unlike all other dataset, no need to read the GS # wavefunctions			
rfphon1 0	# The 1st dataset is a GS calculation, # not a DFPT calculation like all the others			
nqpt1 0	# No q-point calculation in the GS dataset			
kptopt1 1	<pre># Unlike DFPT calcs, the GS dataset can take advantage # of all symmetries for the k-point grid generation</pre>			
prtwfl 1	# We're printing the GS wavefunctions			

Phonons in Al: Other Variables

# Structural Par natom 1 ntypat 1 typat 1 znucl 13	rameters			
acell 3*7.52512692850695e+00 Bohr				
rprim 0.0 0.5 0.5 0.5 0.0 0.5 0.5 0.5 0.0				
xred 3*0				
occopt 3 tsmear 1e-03				
# K-Point Grid kptopt2 2	# The 2nd dataset is the Gamma q-point, it can use # some symmetries for the k-point grid generation			
kptopt 3 ngkpt 16 16 16 nshiftk 1 shiftk 0 0 0	<pre># All other DFPT dataset cannot use symmetries</pre>			
# Output files prtwf 0 prtden 0	# Do not print wavefunctions for DFPT calcs # Do not print density at all			

MRGDDB / ANADDB

mrgddb.out	# ANADDB file	
Nothing 9 output_DS1_DDB output_DS2_DDB output_DS3_DDB output_DS4_DDB output_DS5_DDB output_DS6_DDB output_DS6_DDB output_DS8_DDB output_DS9_DDB	ifcflag 1	# Compute the interatomic force constants # This is used to plot the phonon density of states
	brav 2 ngqpt 4 4 4 nqshft 1 qlshft 0 0 0	<pre># The bravais lattice. See abinit website for info # q-point grid. Must be the same as in the DFPT calc # Number of q-point shifts # q-point shifts</pre>
	prtdos 1 ng2qpt 32 32 32	<pre># We print the phonon DOS # q-point grid for the phonon DOS. It must # be much finer than the first grid. But don't worry # the calculation is extremely fast. You can indulge.</pre>
	enunit 1	# Print frequencies in real experimental units, # not some lousy units like Ha
	nph1l 425	# Number of q-point for the phonon spectrum
	<pre>qph1l 0.0000 0.0000 0.0000 0.0050 0.0000 0.0050 0.0100 0.0000 0.0100 0.0150 0.0000 0.0150 0.0200 0.0000 0.0200</pre>	<pre># All q-point coordinates for the phonon spectrum! LOL # I personally use Excel to generate them. 1.0000 # Gamma 1.0000 1.0000 1.0000 1.0000 1.0000</pre>

Result : Phonon Spectrum of Al

- DFPT can be used to calculate phonons in structures with defects. Exemple: diffusion coefficients.
- > qAgate can help visualize stuff \rightarrow cf. Marcus' talk.

