

Faculté des Sciences Département de Physique Physique Théorique des Matériaux

ABINIT School

Analysis of atomic distortions Philippe Ghosez Philippe.Ghosez@uliege.be

Prague – September 2019

Born-Oppenheimer energy

Solid : interacting electrons and nuclei

 E_{e+i}

R

2

R_va

• <u>General problem</u> :

 $H(\mathbf{r}, \mathbf{R}) \Phi(\mathbf{r}, \mathbf{R}) = E \Phi(\mathbf{r}, \mathbf{R})$ \downarrow $H(\mathbf{r}, \mathbf{R}) = T_i(\mathbf{R}) + U_{ii}(\mathbf{R}) + T_e(\mathbf{r}) + U_{ee}(\mathbf{r}) + U_{ie}(\mathbf{r}, \mathbf{R})$

• Born-Oppenheimer approximation $M_{\kappa} >> m_e \rightarrow T(\mathbf{R})$

 $H_{e+i}(\mathbf{r}, \mathbf{R}) = T_e(\mathbf{r}) + U_{ee}(\mathbf{r}) + U_{ie}(\mathbf{r}, \mathbf{R}) + U_{ii}(\mathbf{R})$

 $H_{e+i}(\mathbf{r}, \mathbf{R}) \varphi(\mathbf{r}, \mathbf{R}) = E_{e+i}(\mathbf{R}) \varphi(\mathbf{r}, \mathbf{R})$

ABINIT total energy $E_{tot}(R)$ corresponds to the Born-Oppenheimer energy $E_{e+i}(R)$

Phonons: harmonic approximation

$$E_{e+i}\left(r_{\kappa}^{a}\right) = E_{e+i}\left(R_{\kappa}^{a}\right) - \sum_{\kappa\alpha a} \underbrace{F_{\kappa\alpha}^{a}}_{\frac{\partial E}{\partial r_{\kappa\alpha}^{a}}} U_{\kappa\alpha}^{a}$$
$$+ \frac{1}{2} \sum_{\substack{\kappa\alpha a \\ \kappa'\beta b}} \underbrace{C_{\kappa\alpha,\kappa'\beta}^{ab}}_{\frac{\partial^{2}E}{\partial r_{\kappa\alpha}^{a}\partial r_{\kappa'\beta}^{b}}} U_{\kappa\alpha}^{a} U_{\kappa'\beta}^{b}$$

• Interatomic Force Constant (IFC) :

-
$$\kappa \neq \kappa'$$
: $C_{\kappa\kappa'} = -K_{\kappa\kappa'}$
- $\kappa = \kappa'$: $C_{\kappa\kappa} = -\Sigma'C_{\kappa\kappa'}$

Configuration space with $3 \times N_{at}$ degrees of freedom

Eigenmodes of vibration

• Equation of motion :

$$M_{\kappa}\ddot{u}^{a}_{\kappa\alpha} = -\sum_{\kappa'\beta b} C^{ab}_{\kappa\alpha,\kappa'\beta} u^{b}_{\kappa'\beta}$$

• Solution :

$$u^{a}_{\kappa\alpha} = \eta^{a}_{\kappa\alpha} e^{-i\omega t} \\ = \eta^{\mathbf{k}}_{\kappa\alpha} e^{i\mathbf{k}\cdot\mathbf{R}_{a}} e^{-i\omega t}$$

$$\omega^2 M_{\kappa} \eta_{\kappa\alpha}^{\mathbf{k}} = \sum_{\kappa'\beta} \eta_{\kappa'\beta}^{\mathbf{k}} \left(\sum_{b} C_{\kappa\alpha,\kappa'\beta}^{ab} e^{i\mathbf{k}.(\mathbf{R}_b - \mathbf{R}_a)} \right)$$
$$||$$
$$\tilde{C}_{\kappa\alpha,\kappa'\beta}^{\mathbf{k}} = \sum_{b} C_{\kappa\alpha,\kappa'\beta}^{0b} e^{i\mathbf{k}.\mathbf{R}_b}$$

$$\omega^2 M_{\kappa} \eta^{\mathbf{k}}_{\kappa\alpha} = \sum_{\kappa'\beta} \tilde{C}^{\mathbf{k}}_{\kappa\alpha,\kappa'\beta} \eta^{\mathbf{k}}_{\kappa'\beta}$$

"Generalized" eigenvalue problem

Dynamical equation

$$\omega^2 M_{\kappa} \eta^{\mathbf{k}}_{\kappa\alpha} = \sum_{\kappa'\beta} \tilde{C}^{\mathbf{k}}_{\kappa\alpha,\kappa'\beta} \eta^{\mathbf{k}}_{\kappa'\beta}$$

• If we define :

$$\tilde{D}^{\mathbf{k}}_{\kappa\alpha,\kappa'\beta} = \tilde{C}^{\mathbf{k}}_{\kappa\alpha,\kappa'\beta} / \sqrt{M_{\kappa}M_{\kappa'}} \\
\gamma^{k}_{\kappa\alpha} = \sqrt{M_{\kappa}}\eta^{k}_{\kappa\alpha}$$

$$\sum_{\kappa'\beta} \tilde{D}^{\mathbf{k}}_{\kappa\alpha,\kappa'\beta} \gamma^{\mathbf{k}}_{\kappa'\beta} = \omega^2 \gamma^{\mathbf{k}}_{\kappa\alpha}$$

Dynamical equation Classical eigenvalue problem

Frequencies and eigendisplacements

$$\tilde{D}^{\mathbf{k}}_{\kappa\alpha,\kappa'\beta} = \frac{1}{\sqrt{M_{\kappa}M\kappa'}} \frac{\partial^2 E}{\partial\eta^{\mathbf{k}}_{\kappa\alpha}\partial\eta^{\mathbf{k}}_{\kappa'\beta}}$$

Second energy derivatives from DFPT

7

From atom to phonon basis

 $U^{a}_{\kappa\alpha} = \eta^{k}_{\kappa\alpha} \cdot e^{ik.R_{a}}$ Commensurate

with

NxNxN supercell 3xn_{at}xN³ degrees of freedom

q-points : NxNxN grid

m-bands: 3xn_{at}

Phonon modes on the N³ grid are orthogonal to each others and form a complete basis for the atomic displacements in the N³ supercell

From atom to phonon basis

From atom to

3xN_{at} phonons form a complete basis : $U_{\kappa\alpha}^{a} = \sum_{i} q_{i} \eta_{\kappa\alpha}^{i}$

E =	$\frac{1}{2}\sum_{\substack{\kappa\alpha\\\kappa'\beta}}C_{\kappa\alpha,\kappa'\beta}U_{\kappa\alpha}U_{\kappa'\beta}$
=	$\frac{1}{2}\sum_{ij}q_{i}q_{j}\sum_{\substack{\kappa\alpha\\\kappa'\beta}}C_{\kappa\alpha,\kappa'\beta}\eta_{\kappa\alpha}^{i}\eta_{\kappa'\beta}^{j}$
=	$\frac{1}{2}\sum_{ij}q_{i} q_{j} \sum_{\kappa\alpha} \eta^{i}_{\kappa\alpha} \sum_{\kappa'\beta} C_{\kappa\alpha,\kappa'\beta} \eta^{j}_{\kappa'\beta}$
=	$\frac{1}{2}\sum_{ij}q_{i}q_{j}\sum_{\kappa\alpha}\eta_{\kappa\alpha}^{i}M_{\kappa}\eta_{\kappa\alpha}^{j}\omega_{j}^{2}$
=	$\frac{1}{2}\sum_{ij}q_{i} q_{j} \omega_{j}^{2}\delta_{ij}$
=	$\frac{1}{2}\sum_{i}\omega_{i}^{2}q_{i}^{2}$

Finite crystal

Change of basis

 $3xN_{at}$ phonons form a complete basis : $U_{\kappa\alpha}^{a} = \sum q_{i} \eta_{\kappa\alpha}^{i}$

Finite crystal

 $E_{e+i} = \frac{1}{2} \sum_{\kappa \alpha} C_{\kappa \alpha, \kappa' \beta} U_{\kappa \alpha} U_{\kappa' \beta}$

 q_i

Imaginary phonon frequencies

- Imaginary phonon frequencies (ω²<0) are associated to structural instabilities.
- η provides the direction to follow in order to reach the lower symmetry phase

Projection on phonon modes

Motivation

- In crystals showing a displacive phase transition (like mode ABO₃ perovskites), the low symmetry phase appears as a small distortion of a (eventually hypothetical) highsymmetry reference.
- It is possible to analyse the atomic distortion in the low symmetry phase by projecting on the phonon of the high-symmetry phase and get many insight on the phase transition

Cubic reference

Ψ Δ

Distorted phase

Mode-by-mode decomposition

Mode contribution :

$$\Delta = \sum_{i} \alpha_{i} \eta_{i} = A \sum_{i} \cos \theta_{i} \ \eta_{i}$$
$$\left\langle \eta_{j} \left| M \right| \Delta \right\rangle = \sum_{i} \alpha_{i} \left\langle \eta_{j} \left| M \right| \eta_{i} \right\rangle = \alpha_{j} = A \cos \theta_{j}$$

Typically we can report :

- The amplitude of each mode: α_i
- The distortion amplitude : A
- The relative mode contribution : $\cos \theta_i$

Compute distortion vector Δ :

- in reduced coordinates
- fixing CM

Ferroelectric distortion BaTiO₃

Paraelectric

Ferroelectric

	P4mm	Amm2	R3m					
BaTiO ₃								
$ \tau $	0.188	0.209	0.214					
$F_{1u}(\mathrm{TO}_1)$	0.993	0.975	0.971					
$F_{1u}(\mathrm{TO}_2)$	0.110	0.087	0.129					
$F_{1u}(\mathrm{TO}_3)$	0.032	0.194	0.228					
CaTiO ₃								
$ \tau $	0.601	0.478	0.435					
$F_{1u}(\mathrm{TO}_1)$	0.985	0.970	0.970					
$F_{1u}(\mathrm{TO}_2)$	-0.171	-0.203	-0.199					
$F_{1u}(\mathrm{TO}_3)$	0.033	0.129	-0.143					
	CaZr	·O ₃						
$ \tau $	0.903	0.886	0.868					
$F_{1u}(\mathrm{TO}_1)$	0.976	0.910	0.897					
$F_{1u}(\mathrm{TO}_2)$	-0.060	0.202	-0.208					
$F_{1u}(\mathrm{TO}_3)$	-0.067	-0.336	-0.197					

Strong domination of the unstable mode

Antiferrodistortive distortion SrRuO₃

			Oxygen rotations		Anti-polar motions		Other oxygen motions	
Rotations	Symmetry	Space group number	R_4^+	M_3^+	X_5^+	R_5^+	M_2^+	M_4^+
$a^0 a^0 c^-$	I4/mcm	140	0.73					
$a^0 a^0 c^+$	P4/mbm	127		0.71				
$a^{0}b^{-}b^{-}$	Imma	74	0.80			0.08		
$a^{0}b^{+}b^{+}$	I4/mmm	139		1.05				0.09
$a^{0}b^{+}c^{-}$	Стст	63	0.85	0.81	0.20	0.03		0.04
$a^-b^+a^-$	Pnma	62	1.00	0.77	0.35	0.06	0.00	
$a^{+}a^{+}c^{-}$	P4(2)/nmc	137	1.15	1.18	0.30			0.07

The unstable modes are dominant BUT other stable modes appear due to anharmonic couplings !

Pnma 62 $Q(R_4^+)Q(M_3^+)Q(X_5^+) + Q(R_4^+)Q(M_2^+)Q(X_5^+) + Q(R_5^+)Q(M_3^+)Q(X_5^+) \dots$

 $a^{-}b^{+}a^{-}$

Antiferrodistortive distortion SrRuO₃

stable modes appear due to

62

				Ovucon rotations	Anti polor motions	Other orvicen metic
	Rotations	Symmetry	Space group number		4	
	$a^0 a^0 c^-$	I4/mcm	140		$2 , 1 P \cap 4$	
	$a^0 a^0 c^+$	P4/mbm	127	$\Box = -A_1 Q$	$M + - D_1 Q_M$	
	$a^{0}b^{-}b^{-}$	Imma	74	2'	4 ' <i>1</i>	
	$a^{0}b^{+}b^{+}$	I4/mmm	139		•	
	$a^{0}b^{+}c^{-}$	Стст	63	1	. 1 .	
	$a^-b^+a^-$	Pnma	62	+ - AC	$)^{2} + - B \Omega^{4}$	$+C \Omega^2 \Omega^2$
	$a^{+}a^{+}c^{-}$	P4(2)/nmc	137	<u>່</u> ງ່ ² ິ	R' = 2 R	12 R R N
					4	
The	unstal	ble mod	des are dor	1.	2	-

 $+\frac{1}{2}A_{3}Q_{X}^{2}-\lambda Q_{M}Q_{R}Q_{X}+\dots$

 $Q(R_4^+)Q(M_3^+)Q(X_5^+) + Q(R_4^+)Q(M_2^+)Q(X_5^+) + Q(R_5^+)Q(M_3^+)Q(X_5^+) \dots$

Pnma

 $a^{-}b^{+}a^{-}$

N Miao et al

Aurivillius Bi₂WO₆

Aurivillius Bi₂WO₆

Phase	A	$\frac{\Gamma_5^-}{[198i]}$	X_2^- [183 <i>i</i>]	X_2^+ [135 <i>i</i>]	X_3^+ [104 <i>i</i>]	X_4^+ [98 <i>i</i>]	Γ_5^- [29]	X_2^- [80]	X_3^+ [107]	Γ_5^- [137]
Phases arising from single-mode condensation										
Fmm2	361.0	0.84					0.51			0.11
Amma	395.6		0.79					0.60		
Abam	444.7			0.99						
Bmab	444.5				0.98				0.14	
Amaa	384.0					0.99				
Experimentally observed phases										
B2cb	601.0	0.53			0.79		0.24			0.09
$P2_1ab$	582.7	0.52		0.59	0.55		0.04		0.1	0.09
Hypothetical phases										
$A2_1ma$	514.5	0.58		0.78			0.01			0.11
$P2_1/a$	455.0			0.76	0.62				0.11	

Allow to follow mode amplitude evolution from one phase to another and to understand mode competition or cooperation

$$\Delta E_t (Q_{\Gamma_5^-}, Q_{X_2^+}, Q_{X_3^+})$$

$$= -2.50Q_{\Gamma_5^-}^2 - 7.50 \times 10^{-1}Q_{X_3^+}^2 - 1.03Q_{X_2^+}^2$$

$$+ 1.36 \times 10^{-5}Q_{\Gamma_5^-}^4 + 1.97 \times 10^{-6}Q_{X_3^+}^4$$

$$+ 2.65 \times 10^{-6}Q_{X_2^+}^4 + 2.10 \times 10^{-6}Q_{\Gamma_5^-}^2 Q_{X_3^+}^2$$

$$- 1.79 \times 10^{-9}Q_{\Gamma_5^-}^2 Q_{X_2^+}^2 + 1.79 \times 10^{-6}Q_{X_3^+}^2 Q_{X_2^+}^2.$$

Aurivillius Bi₂WO₆

Comparison of theoretical and experimental GS structures

Atomic positions

Structure	Atom	Wyckoff	x	у	Z.
		P21	ab		
a = 5.30 Å	Bi_1	4a	0.0109	0.4843	0.1698
(5.45)			(-0.0126	0.5113	0.1730)
	Bi ₂	4a	0.0036	0.5074	-0.1698
b = 5.32 Å			(-0.0113	0.4762	0.1719)
(5.48)	W	4a	0.0000	0.0000	0.0000
	O'_1	4a	0.2318	0.6896	0.0108
c = 16.17 Å			(0.2679	0.6933	-0.0147)
(16.47)	O_1''	4a	0.3321	0.1984	-0.0109
			(0.3342	0.2220	0.0163)
	O'_2	4a	-0.0684	-0.0368	0.1109
	_		(0.0854	0.0449	0.1072)
	O_2''	4a	0.4428	0.4563	-0.1108
	_		(0.5703	0.5526	-0.1086)
	O'_3	4a	0.2676	0.2413	0.7515
	5		(0.2728	0.2508	0.7489)
	O_3''	4a	0.2752	0.2465	0.2516
	5		(0.2740	0.2326	0.2514)

Mode décomposition

Table 2. Contribution of the Phonon Modes of the Hypothetical I4/mmm Phase (Frequencies in Brackets in cm⁻¹) to the Distortion from the I4/mmm Phase to the Calculated and Experimental (300 K) $P2_1ab$ Ground State^a

		Γ_5^-	X_2^+	X_3^+	Γ_5^-
	Α	(198 <i>i</i>)	(135 <i>i</i>)	(104 <i>i</i>)	(29)
calculated (present)	585	0.52	0.59	0.55	0.04
experiment (300 K) ⁶	772	0.56	0.30	0.59	0.35

^{*a*}Only the most significant contributions are retained. *A* is the distortion amplitude (in Bohr) and α_i the cosine director, according to the conventions and normalization conditions defined in ref 7.

DJANI, BOUSQUET, KELLOU, AND GHOSEZ

PHYSICAL REVIEW B 86, 054107 (2012)

Antiferroelectric PbZrO3

ω

GGA-WC LDA

143i

58i

190i

100i

16i

196i

53i

137i

52i

175i

89i

10i

180i

48i

121i

62i

128i

50i

qAgate

(Abinit Graphical Analysis Technical Engine)

Amongst many other functionalities :

- Condense phonon modes with given amplitudes in a REF structure (useful to look at energy wells or fit an energy expansion in terms of selected degrees of freedom).
- Provides mode-by-mode analysis of a the distortion between a REF and a distorted structure.

(a public version with documentation soon)