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Outlook

1) The electron density as the basic variable; the energy as a density functional

2) Minimizing the energy functional; the Kohn-Sham equations

3) The exchange-correlation energy: basic definitions and the main 
approximations (LDA, GGA, hybrid functionals) 

4) Plane-wave implementation 

5) Pseudo-potentials, an historical perspective: core and valence electrons, 
norm-conserving and ultra-soft PSPs, PAW method

Today, there are many available “ready-to-use” DFT-based codes : 
do we really know what is inside  ?

The following lecture is for people having some previous experience with DFT :
recalling main concepts, there are excellent books on DFT that provide more insight
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Generalities 
Time and length scales

electronic
structure

mesoscopic
scale

macroscopic
scale

1

10-3

10-6

10-9

10-12 10-9 10-6 10-3 1 t[s]

L[m]
Thermodynamics 
Mechanics of continuous 
media

Schrodinger-like equations

Kinetic Monte Carlo 

It is often necessary to combine different methods 
in order to tackle realistic problems

Atomic scale
Molecular Dynamics, 
Monte Carlo (with 
empirical potentials) 
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Generalities 
Properties and methods

Structural & dynamical properties
(from atomic trajectories)

Electronic & magnetic properties
(from electronic structure)

Empirical 
interatomic 
potentials Tight-binding

(semi-empirical)

DFT

Hartree-Fock

Post 
Hartree-Fock
(MP2, Coupled 
Cluster, etc.)

Quantum 
Monte Carlo
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Generalities 
Ab initio methods

Goal : Atom-atom interactions and material properties  from first principles
● Energies : chemical accuracy = 1 kcal/mol = 43 meV / particle 
● Atomic positions  within 0.01 Å uncertainty
● Vibrational frequencies within  0.1 THz = 3.3 cm-1 

What is actually affordable within ab initio methods
● Number of atoms < 1000
● Ab Initio Molecular Dynamics : shorter runs than 100 ps 
● Accuracy crucially depends on the employed approximations 

AB INITIO == from the fundamental equations 
But the theory is necessarily approximated ! 
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Outlook

1) The electron density as the basic variable; the energy as a 
density functional

2) Minimizing the energy functional; the Kohn-Sham 
equations

3) The exchange-correlation energy: basic definitions and 
properties and the main approximations (LDA, GGA, hybrid 
functionals) 

4) Plane-wave implementation 

5) Pseudo-potentials, an historical perspective: core and 
valence electrons, norm-conserving and ultra-soft PSPs, PAW 
method
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I. The electron density as the basic variable
Fixed nuclei, search for the electronic wavefunction

Ψ(r1 , r2 ,… , rN , R1 ,… ,RM )=ψ (r1 , r2 ,… , rN ;{R I}) χ (R1 ,… ,RM )

Ĥ=∑
i=1

N [−ℏ2∇ i
2

2m
−∑

J=1

M ZJ e
2

|ri−RJ|]+∑i< j e2

|ri−r j|

Time-independent Schrödinger equation for N electrons
The M nuclei are fixed in RJ (no spin, no relativistic effects)

Ansatz : 

The electronic part of the wave function is too complex to be 
straightforwardly computed  !!!
Ex: N=10, P points to interpolate on each spatial coordinate → P 30 variables !!!  

Is there any way to avoid the exponential growth of complexity with N ? 
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I. The electron density as the basic variable
From density to Hamiltonian : an isolated atom

n(r)=⟨ψ 0|∑
i=1

N

δ (r−r i)|ψ 0⟩
The (ground-state) electron density is a 
contraction over the spatial coordinates :
● Function of 3 coordinates, independently of N
● It is in principle measurable

(almost) exact electron density 
for an isolated atom (ground state) 
● Where is the nucleus (R) ?
● How many electrons (N) ?
● Atomic number Z ?

Ĥ=∑
i=1

N [−ℏ2∇ i
2

2m
− Z e2

|ri−R|]+∑i< j e2

|ri−r j|
R, N, Z, from n(r) →  the specific 
Hamiltonian is found !!! 

 n(r )
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I. The electron density as the basic variable
From density to Hamiltonian : Hohenberg-Kohn theorems

)(                  )( 11 rVrn

)(                  )( 22 rVrn

)(                  )( 33 rVrn

Ĥ=∑
i=1

N [−ℏ2∇ i
2

2m
+∑
i< j

e2

|ri−r j|]+∑i=1

N

V ext (ri)

universal Hamiltonian 
for N electrons

System-specific one-
electron operator 

HK theorem #1 
There is a one-to-one correspondence between 
ground-state electron densities  and ext. potentials

Careful: we work at constant 
number of electrons N  

E [n ]=F [n]+∫dr n(r)V ext (r)

HK theorem #2 
E[n] has a minimum for the true ground-state 
electron density n0(r) (among all possible ones)
→ find n0(r) by minimizing E[n]
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I. The electron density as the basic variable
Constrained search 

The “constrained-search” approach by Levy 
M. Levy, PNAS 76 6062 (1979)

0. Search for the lowest energy 
among all N-electron wfs.
Be E  the ground-state energy

E = lim inf
Ψ

⟨Ψ|T+V ee+V ext|Ψ⟩

Ev [n ] = lim inf
Ψ→n

⟨Ψ|T+V ee|Ψ⟩+∫ dr n(r) vext (r)
1. Form classes of all N-electron wfs 
that give the same density n(r), and 
minimize the energy 

2. Consider the wfs  yielding E
v
[n]

and now minimize with respect to 
the density at fixed v(r)

E = lim inf
n

Ev [n]

“Conventional”step 0 is equivalent to steps 1+2 
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method
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II. Minimizing E[n]
variational approach

Ĥ=∑
i=1

N [−ℏ2∇ i
2

2m
+∑
i< j

e2

|r i−r j|]+∑i=1

N

V ext (ri)

E [n ]=T [n]+ e
2

2 ∫dr1∫dr2

n(r1)n(r2)

|r1−r2|
+U [n ]+∫ dr1n(r1)V ext (r1)

Minimize E[n] at constant number N of electrons:

δ
δ n(r) [E [n]+μ∫dr n(r)]=δ T [n ]

δ n(r)
+e2∫dr1

n(r1)

|r−r1|
+δ U [n]
δ n(r)

+V ext (r)−μ=0

UNKNOWN FUNCTIONALS !!!

The Lagrange  multiplier m on the number of 
electrons is the electron chemical potential :

∂ E [n]
∂N

=μ
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II. Minimizing E[n]
interacting vs. non-interacting electrons : density

A year later (1965), Kohn and Sham had a brilliant idea: the density of the physical 
system (with e-e interaction) can be reproduced by a fictitious system (without e-
e interaction) in a suitable one-electron external potential

−
ℏ2∇1

2

2m
−
ℏ2∇2

2

2m
−2e2

|r1|
−2 e2

|r2|
+ e2

|r1−r2|

−
ℏ2∇1

2

2m
−
ℏ2∇2

2

2m
−2e2

|r1|
−2 e2

|r2|
+δ V (r1)+δ V (r2)

 n(r ) = n(r) 

Example:  the He atom 
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II. Minimizing E[n] 
interacting vs. non-interacting electrons : potential

Interacting system (real)

Non-interacting system (virtual)

T [n]+U [n]=T 0[n]+EXC [n ]

E [n ]=T 0 [n]+
e2

2 ∫dr1∫dr2

n(r1)n(r2)

|r1−r2|
+EXC [n]+∫ dr n(r1)V ext (r1)

δ T 0 [n]
δ n(r)

+ e2∫ dr1

n(r1)

|r−r1|
+
δ EXC [n]
δ n(r)

+V ext (r ) = μ

δ T 0 [n]
δ n(r)

+ δ V (r) +V ext (r) = μ

The non-interacting system has the 
same electron density of the real 
system under the effective one-
electron potential

V eff (r)=e
2∫dr1

n(r1)

|r−r1|
+
δ EXC [n]
δ n(r)

+V ext (r )
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II. Minimizing E[n] 
the Kohn-Sham equations

Although T
0 
[n] is unknown, we can solve the non-interacting  N-electron system ! 

n(r)=∑
i=1

N

|ϕ i(r)|
2

[−ℏ2∇2

2m
+V eff (r)]ϕ i(r)=ϵ iϕ i(r )

1. Expand the density in the virtual one-electron occupied orbitals

2. Each orbital obeys a Schrödinger equation in the effective one-electron potential 

● Theoretical foundation of one-electron 
equations for N interacting electrons

● Self-consistent equations  

V eff (r)=e
2∫ dr1

n(r1)

|r−r1|
+
δ EXC [n]
δ n(r)

+V ext (r )with

V eff (r)

n(r) {ϕ i(r )}
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III. Exchange-correlation density functional 
basic definitions

The exact  E
XC 

[n]  is unknown apart from ideal systems (homogeneous 
electron gas) but there are many available approximations for the non-
homogeneous electron gas

E [n ]=T 0 [n]+
e2

2 ∫dr1∫dr2

n(r1)n(r2)

|r1−r2|
+EXC [n ]+∫ dr n(r)V ext (r)

EXC [n ]=T [n ]−T 0 [n ]+Ee−e [n]−
e2

2 ∫dr1∫dr2

n(r1)n(r2)

|r1−r2|

Difference between the kinetic energy 
of the interacting vs. the non-
interacting electron gas at the same 
density  

Difference between the e-e repulsion of the 
quantum and the classical electron gas : 
● Exchange between paired electrons
● Correlation between electrons
● Self-interaction correction 
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III. Exchange-correlation density functional 
Example: the He atom, ground state

the electrons are dynamically correlated 
and sit on different orbitals

H=−
ℏ2∇1

2

2m
−
ℏ2∇2

2

2m
−2e2

|r1|
−2e2

|r2|
+ e2

|r1−r2|

φ (r1 ,r2) = gα (r1)gα (r2)v

Singlet ground state (L=0, S=0)
E0 = -5.8075 Ryd

Trial #1 :

ψ (r1 ,σ 1 ,r2 ,σ 2) = φ (r1 , r2)( χ ↑(1) χ↓(2)−χ ↓(1) χ↑(2))/√2v

with gα (r)=α
3 /2

√π exp(−α r)v

E0
(1)=lim inf

α
⟨ψ|H|ψ ⟩→α =+1.6875 , E0

(1)=−5.5695 Rydv

φ (r1 ,r2) = gα (r1)gβ (r2)+gβ (r1)gα (r2)vTrial #2 :

E0
(2)=lim inf

α , β
⟨ψ|H|ψ ⟩→α=+2.18 ,β =+1.19 , E0

(2)=−5.5751Rydv

α ≠ β →v
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III. Exchange-correlation density functional 
The spurious self-interaction 

[−ℏ2∇2

2m
−e2

r ]ϕ (r)=ϵ ϕ (r)
The H atom: a trivial case ?

[−ℏ2∇2

2m
−e2

r
+e2∫ dr1

|ϕ (r1)|
2

|r−r1|
+
δ EXC [n]
δ n(r) ]ϕ (r)=ϵ ϕ (r)

The exact Schrödinger equation 
for the one-electron orbital 

The Kohn-Sham equation for the one-electron orbital is wrong, unless the XC 
potential exactly compensates the self-interaction  Coulomb term
(not automatic for any approximated functional) 

The KS equation 

The spurious self-interaction can be significant on localized orbitals (d and f states atomic-
like states, trapped electrons, etc.). 
It can be partially corrected via LDA+U (GGA+U) and hybrid functionals 
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III. Exchange-correlation density functional 
The Jacob’s ladder 

n(r)

Ooups … we have to think the XC energy as a functional of the electron density  

n(r),∇ n(r)

n(r),∇ n(r) ,
δ n(r)
δ V (r ')

n(r),∇ n(r) ,{ϕ i(r )}

n(r),∇ n(r) ,∇2n(r) ,∑
i=1

N

|∇ϕ i (r)|
2

Local Density Approximations (LDA, LSDA)

Generalized Gradient Approximations (GGA, s-GGA)

DFT-vdW including dispersion via the (approximate) 
response function of the electron gas 

Meta-GGA, including small dishomogeneity 
of the kinetic energy functional 

Hybrid functionals including a fraction of Fock 
exchange via the KS orbitals 

 … ??? ... 

Hybrid functionals including a fraction of Fock 
exchange via the KS orbitals 
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III. Exchange-correlation density functional 
Formal properties

• Uniform coordinate 
scaling

• Coupling-constant 
integration  
(e → se) 

• Sum rules

• Size consistency EXC [nA+nB ]→EXC [nA ]+EXC [nB ]

For spatially-separated A and B systems

r '=λ r n ' (r ')=λ−3n(r)

T 0 [n ' ]=λ
−2T0 [n]andEX [n ' ]=λ

−1EX [n ]

and

EXC [n ]=∫
0

1

ds ⟨Ψn
(s)|V̂ ee

(s)|Ψn
(s)⟩−U [n ]

Varying the electron charge adiabatically, by keeping the electron 
density clamped at that of the interacting (s=1) system  

EXC [n]=
e2

2 ∫ dr1∫dr2

n(r1)nXC(r1 ,r2)

|r1−r2|
“XC” hole: conditional 
probability to have an electron 
at r2 when another is at r1 

∫ dr2nXC(r1 ,r2)=−1 ∀ r1
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III. Exchange-correlation density functional 
Extension to spin (non-relativistic case)  

n↑(r)=∑
i=1

N↑

|ϕ i ,↑(r)|
2

[−ℏ2∇2

2m
+e2∫ dr1

n(r1)

|r−r1|
+
δ EXC [n↑ , n↓]

δ n↓(r)
+V ext (r)]ϕ i ,↓(r)=ϵ i ,↓ϕ i ,↓(r)

1. Choose an (arbitrary) axis z of quantization for the spin  → SZ 
2. Consider spin-up and spin-down KS orbitals → spin-up and spin-down densities 

4. The KS spin-orbitals obey distinct Kohn-Sham equations

n↓(r)=∑
i=1

N↓

|ϕ i ,↓(r)|
2

3. The XC functional depends on both densities : EXC [n↓ , n↑]

[−ℏ2∇2

2m
+e2∫ dr1

n(r1)

|r−r1|
+
δ EXC [n↑ , n↓]

δ n↑(r)
+V ext (r)]ϕ i ,↑(r)=ϵ i ,↑ϕ i ,↑(r )
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III. Exchange-correlation density functional 
The homogeneous electron gas (heg) 

n(r) = n̄ = N /V ∀ r

A solvable model: the homogeneous electron gas  

EXC [n] → EXC
(heg) = N eXC

(heg )( n̄)

eXC
(heg)

n̄

The exchange-correlation energy per 
electron                      can be obtained from 
quantum MonteCarlo simulations of the 
heg for various mean densities        
(Ceperley & Alder, PRL 45, 566 (1980)

eXC
(heg)(n̄)

n̄

Note that the exchange energy of the heg can be easily computed 

eX
(heg)(n̄) = − 3

4 π (3π
2 n̄)1 /3



ABINIT school, Prague 201924

III. Exchange-correlation density functional 
The Local Density Approximation (LDA) 

The homogeneous electron gas the inhomogeneous gas in the LDA  

EXC
(heg)=V N

V
eXC
(heg)(n̄)

XC as a sum of local contributions 

EXC
(LDA)=∫dr n(r)eXC

(heg)(n(r))

LDA is not too bad in many systems with 
moderate XC effects (simple metals, 
elemental semiconductors, etc.)
● Sum rule: the XC hole contains exactly an 

electron
● Good in the high-density limit
● Partial error compensation: 

underestimated |EX
(LDA)| and 

overestimated  |EC
(LDA)|  

Difference between QMC and LDA exchange and 
correlation energies in Si (Hood et al. PRB 57, 8972)  
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III. Exchange-correlation density functional 
The Generalized Gradient Approximation (GGA) 

Improving on the LDA via corrections depending on the density gradient 

EXC
(GGA )=EXC

(LDA)+∫ dr FXC (n(r) , s(r))

Distinct parametrizations of FXC are available. Most of them behaves : 
● 0 < s < 1 : significant contributions to EXC
● 1 < s < 3 : secondary contributions, still appreciable
● s  > 3 : can be neglected, avoiding the unphysical divergence of the naïve gradient 

expansion for s → ∞  

with s(r)= ∇ n(r)
2kF n(r )

Main characteristics of GGAs (BP86, PW91, PBE, rPBE, PBEsol, etc.): 
● Good description of weak bonds (H bonds)
● Atomic densities better described than in the GGA
● Often GGA outperforms LDA, sometimes GGA overcorrects LDA
● Long-range interactions (vdW) and strong correlated systems badly accounted for
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III. Exchange-correlation density functional 
Performances: GGA vs LDA 

Atoms: 
Exchange-correlation energies in Ha

Molecules: 
Atomization energies in Ha

Molecules and Solids:   
mean relative errors   LSDA  GGA
● Bond lengths -1% +1%
● Strength of H bonds +43% +5%
● Frequencies +3 % -3%
● Electron affinity +19% +12%

A notable exception: the Au crystal
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III. Exchange-correlation density functional 
Performances: GGA vs LDA 

Perdew & Kurth, in  “A primer in Density Functional Theory”, edited by C. Fiolhais, 
F. Nogueira and M.A.L. Marques, Springer (2003)
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III. Exchange-correlation density functional 
 Orbital-dependent exchange 

EXC=EC [n]+EX [ϕ 1 ,σ ,ϕ 2 ,σ ,…,ϕ N ,σ ]

[−ℏ2∇2

2m
+e2∫ dr1

n(r1)

|r−r1|
+
δ EC [n↑ ,n↓]
δ nσ (r)

+V ext (r)]ϕ i ,σ (r)

What about writing the exchange energy in terms of the Kohn-Sham orbitals 
instead of the density ?   hum, not really a theory based on the density  ... 

   The Kohn-Sham equations become integral equations  :

+e2∑
j> i
∫dr1

ϕ i ,σ (r1)ϕ̄ j ,σ (r1)ϕ j ,σ (r )

|r−r1|
=ϵ i ,σ ϕ i ,σ (r)

This increases the numerical complexity when:
1) Solving the KS equations at fixed potential
2) Iterating to self-consistency 
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III. Exchange-correlation density functional 
 Hybrid functionals : B3LYP

EXC=EC
(GGA)[n]+EX [{ϕ i ,σ }]   worse results than in the GGA

Fock theory has indeed many drawbacks … 
Pragmatically (B3LYP) : try a linear combination of LSDA and “exact” exchange  

EXC
(B3 LYP)=EXC

(LSDA )[n]+a0(EX [{ϕ i ,σ }]−EX
(LSDA )[n])+aX Δ EX(B88)[n ]+aCΔEC

(LYP)[n]
GGA correction to EX

(LDA) GGA correction to EC
(LDA)

Three free parameters a0 , aX , aC

They were determined by a fit to a global set (“G2” set) of molecular properties 

Pros and cons
● First XC approximation to provide reasonable energies for strongly correlated electron 

systems
● KS orbitals and eigenvalues closer to interacting-electron counterparts
● Numerical complexity, difficult to implement in plane-wave based codes
● Really ab initio ? 
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III. Exchange-correlation density functional 
 Spatially-separated hybrid functionals : HSE06

Is bare (Fock) exchange suitable for solids? (e-e interaction is screened at long range) 

EXC
(HSE 06)=α EX

sr [{ϕ i ,σ }]+(1−α )EX
(PBE−sr )[n]+EX

(PBE−lr )[n]+EC
(PBE)[n]

GGA exchange, long-range

Typical values: α∼0.25 ; ω∼0.20 A−1

Pros and cons
● Often better than B3LYP in solids, not necessarily in finite systems (molecules)
● KS orbitals and eigenvalues rather close to interacting-electron counterparts
● Numerical complexity, difficult to implement in plane-wave based codes
● Physically sound, the range separation can be justified by many-body theories

Heyd, Scuseria and Ernzerhof  introduced in 2006 a hybrid functional, where the 
linear combination of GGA and Fock exchange is controlled by two parameters

GGA exchange, short-rangeFock exchange, short-range

w-1  defines the typical cutoff distance 
between short and long range
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III. Exchange-correlation density functional 
Performances: LDA, GGA, meta-GGA 

Non-covalent interactions

Basic properties Reaction energies

Complete set
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IV. Plane Waves 
PW expansion : fundamentals

Framework: solve the Kohn-Sham equations at fixed effective potential
(for how to attain self-consistency, listen at the next lectures ...)

1. Work in the crystal representation (i.e. periodic boundary conditions)

ϕ i ,k (r) = ei k⋅r ui , k (r) with ui ,k (r+∑ (l1a1+l2a2+l3a3)) = ui , k (r)

2. Expand the periodic part of the orbital in PWs with wave vector G=m1b1+m2b2+m3b3

ϕ i ,k (r) = ∑
G

ci(k+G) ei (k+G)⋅r θ (Ecut
(1)−ℏ2|k+G|2/2m)

Fourier expansion coeffs: the dof in PW-based codes The sum is truncated at the cutoff energy Ecut
(1)

ϕ i ,k (r) = ∑
G

ci(k+G) ei (k+G)⋅r θ (Ecut
(1)−ℏ2|k+G|2/2m)

3. Expand the other periodic quantities (density, potential) in plane waves 

n(r) = ∑
G

~n (G) θ (Ecut
(2)−ℏ2G2/2m) second cutoff energy Ecut

(2)

4. Adjust the two cutoff energies in order to attain converged quantities
The higher the cutoff, the more accurate the results, the slower the calculations
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IV. Plane Waves 
the super-cell 
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IV. Plane Waves 
the calculation of the electron density

Usually, about 104 PWs  in a super-cell calculation: we must avoid any double sum 
over reciprocal (G) wave-vectors  → massive use of fast Fourier transforms (FFT)

Example: the electron density

n(r) = ∑
i , k

wk|ui ,k (r)|
2 Product in r-space  convolution in ↔ G-space

Instead: 
c i(k+G)

FFT-1
ui ,k (r) n(r) = ∑

i , k

wk|ui ,k (r)|
2

FFT~n (G)

These operations are of the order of N MPW log MPW 

Number of occupied orbitals Number of Pws (grid 1)
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IV. Plane Waves 
R-space (direct) and G-space (reciprocal)
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V. Pseudo-potentials 
Core and valence states 

We aim at simulating material properties:
1. Do we really need to describe core states ?
2. For certain properties, is it possible to adopt 
a partial representation of valence states ? 

Valence state and Coulomb 
potential in  a crystal 

Core region: 
atomic-like, quick
oscillations

Interstitial 
region(bonding) 
smooth variations

Huge gradients 
Imply many plane 
waves for the orbital 
expansion ...

How to “get rid” of core states ?
How to properly “replace” the true valence states with smooth ones ? 
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V. Pseudo-potentials 
The heuristic approach

A simple model: the 1D potential well.
When varying the well depth, the number of bound states grows.
Among certain depths, the energy of the uppermost states coincides

The idea: replace VC with VA, by reproducing the relevant properties of 
the valence (uppermost) states.

An old idea: Fermi (1936), Philips & Kleinman (1959), and others ...



ABINIT school, Prague 201940

V. Pseudo-potentials 
Phillips & Kleinman : projectors

H|ψ v ⟩=ϵ v|ψ v ⟩“true” valence state|ψ v ⟩ and ⟨ψ c|ψ v ⟩=0

|ψ v ⟩=|ϕ v ⟩−∑
c

|ψ c ⟩ ⟨ψ c|ϕ v ⟩ pseudo-valence state|ϕ v ⟩

Which equation for               ?|ϕ v ⟩ ( H+∑
c

(ϵ v−ϵ c )|ψ c ⟩ ⟨ψ c| ) |ϕ v ⟩=ϵ v|ϕ v ⟩

|ϕ v ⟩ |ψ v ⟩-         has same eigenvalue as               !  

-  The pseudo-Hamiltonian having       as solution, 
contains now a projector on the core states, which is 
(1) short-range, (2) non-local, and (3) repulsive 

|ϕ v ⟩ H ps=H+∑
c

(ϵ v−ϵ c)|ψ c ⟩ ⟨ψ c|

|ϕ ' v ⟩=|ϕ v ⟩−∑
c

α c|ψ c ⟩ex. try with Careful: non-unique solutions !!! 
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Outlook

1) The electron density as the basic variable; the energy as a 
density functional

2) Minimizing the energy functional; the Kohn-Sham 
equations

3) The exchange-correlation energy: basic definitions and 
properties and the main approximations (LDA, GGA, hybrid 
functionals) 

4) Plane-wave implementation 

5) Pseudo-potentials, an historical perspective: core and 
valence electrons, norm-conserving and ultra-soft PSPs, PAW 
method
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V. Pseudo-potentials 
”Ab initio” pseudopotentials: main ingredients

What are they made of ?
● A long-range Coulomb-like ionic 

potential by the nucleus and the 
core electrons

● A short-range, non-local projector, 
usually repulsive and different for 
each angular moment 

V̂ loc=−
(Z−N c)

r
∼ −

Z ion(r)
r

V̂ nl=∑
l=0

lmax

∑
m=−l

l

Δ vl
(ps)(r) δ (r−r ')|Y lm ⟩ ⟨Y lm|
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V. Pseudo-potentials 
Semi-local and separable pseudopotentials 

A computational “trick”: The Fourier transform of fully non-local pseudopotentials (in 
r, q, f)  is simply the product of two matrix elements : 

⟨G ( |f n ,lY lm ⟩ ⟨Y lm f n ,l| ) G' ⟩ = ⟨G|f n, lY lm⟩ ⟨ f n ,lY lm|G' ⟩

Fully non-local pseudopotentials are very desirable in plane-waves based codes
How to go from semi-local to fully non-local pseudopotentials  ?

⟨β n ' l ' m'|f nlY lm⟩ = δ n , n'δ l ,l 'δm,m '

1)At given l, use the radial 
eigenstates as projectors

2) Define a dual space
3) And obtain, after some algebra

with    

∑
n=0

∞
|f nl ⟩ ⟨ f nl| = δ (r−r ' )

V̂ ( ps)=V̂ localδ (r−r ' ) + ∑
i=nlm

∑
j=n ' l ' m'

Bij|ϕ i ⟩ ⟨ϕ j|

Bij =⟨ϕ i|√Δ vi( ps)Δ v j(ps)|ϕ j ⟩

Actually, Kleinman & Bylander proposed in 1982 a similar transformation where only one 
term of the expansion in (1) was retained … partial representation of the d  function
→ low-energy spurious solutions below the valence energies (“ghost states”) 
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V. Pseudo-potentials 
“Standard” recipe for norm-conserving pseudo-potential

1)Separation core/valence and choice of the reference atomic configuration 
→ true (“all-electron”) valence wave-function  

2) Pseudization: from the true wf to the nodeless, smooth pseudo-wf 
3) Modeling the core charge density (for non-linear core corrections) 
4) Invert the atomic KS equation and find the effective potential
5)Subtract out from the effective potential the XC and Coulomb terms → ionic psp
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V. Pseudo-potentials 
Testing the pseudo-potential

1)Choice of the local component of the pseudo-potential in order to avoid ghost states -   
see Gonze et al, PRB 41 12264 (1991)  

2) For the atom: compare all-electron valence states to valence states obtained by using 
the pseudo-potential

3)Compute the logarithmic derivatives (connected to the scattering properties of the 
pseudopotential on states at different energies) 

4) For some reference systems : compare all-electron to psp observables

TRANSFERABILITY
=

How does the pseudo-
potential work for 
different systems ?
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V. Pseudo-potentials 
Ultra-soft pseudopotentials 

Up to now, we considered norm-
conserving pseudo-potentials, that is

⟨ f nl
( ps)Y lm|f nl

(ps)Y lm⟩ = ⟨ f nl
( AE)Y lm

|f nl
(AE)Y lm⟩ = 1

Relaxing this condition allows the pseudo-
wave-function to be smoother 
→ low energy cutoff for PW expansion
But the norm conservation improves  psp 
transferability ...

Up to now, we considered norm-
conserving pseudo-potentials, that is

All-electron (AE)

Pseudo (PS)

3d radial wave function

Vanderbilt PRB 41 7892 (1990)
1) Use several projectors at different energies for 
each angular channel

2) Augment the valence charge with pre-defined 
functions that are localized in the core region   

V̂ ( ps)=V̂ localδ (r−r ' ) + ∑
i
∑
j

Bij|β i ⟩ ⟨ β j|

Ultra-soft
Pseudo wf
Small cutoff

Augmentation 
charge (fixed) 
Large cutoff
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Outlook

1) The electron density as the basic variable; the energy as a 
density functional

2) Minimizing the energy functional; the Kohn-Sham 
equations

3) The exchange-correlation energy: basic definitions and 
properties and the main approximations (LDA, GGA, hybrid 
functionals) 

4) Plane-wave implementation 

5) Pseudo-potentials, an historical perspective:  
Projector-Augmented Waves (PAW)
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V. Projector-Augmented Waves (PAW)

First (original) paper on PAW: Blochl, PRB 50, 17953 (1994)
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V. Projector-Augmented Waves 
The full electron density & the double grid
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V. Projector-Augmented Waves 
The representation of the full electron density 
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V. Projector-Augmented Waves 
Pros and cons 



ABINIT school, Prague 201952

V. Projector-Augmented Waves 
PAW versus Ultra Soft pseudo-potentials (USPsP) 
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V. Projector-Augmented Waves 
Results (1)

Parameters of PAW dataset and USPsP
Kresse & Joubert, PRB 59, 1758 (1999)

Bond lengths in dimers and molecules 
Kresse & Joubert, PRB 59, 1758 (1999)

AE = All-electron
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V. Projector-Augmented Waves 
Results (2)

Cohesive properties of Si, bcc V, bcc Li
Kresse & Joubert, PRB 59, 1758 (1999)

Relative stability of some phases of Fe with 
respect to non-magnetic (NM) hcp Fe

LSDA results compared to sGGA in brackets

FLAPW=”Fully Linear Augmented Plane Waves”
(all-electron calculations for crystals) 
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