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Today, there are many available “ready-to-use” DFT-based codes :

do we really know what s inside ?
1) The electron density as the basic variable; the energy as a density functional
2) Minimizing the energy functional; the Kohn-Sham equations

3) The exchange-correlation energy: basic definitions and the main
approximations (LDA, GGA, hybrid functionals)

4) Plane-wave implementation

5) Pseudo-potentials, an historical perspective: core and valence electrons,
norm-conserving and ultra-soft PSPs, PAW method

The following lecture is for people having some previous experience with DFT :
recalling main concepts, there are excellent books on DFT that provide more insight
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It is often necessary to combine different methods
In order to tackle realistic problems
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Generalities

Ab initio methods

Goal : Atom-atom interactions and material properties from first principles
* Energies: chemical accuracy = 1 kcal/mol =43 meV / particle

e Atomic positions within 0.01 A uncertainty

* Vibrational frequencies within 0.1 THz=3.3cm™

What is actually affordable within ab initio methods

* Number of atoms <1000

* Ab Initio Molecular Dynamics : shorter runs than 100 ps

* Accuracy crucially depends on the employed approximations

AB INITIO == from the fundamental equations
But the theory is necessarily approximated !



1) The electron density as the basic variable; the energy as a

density functional

2)




I. The electron density as the basic variable

Fixed nuclei, search for the electronic wavefunction

Time-independent Schrodinger equation for N electrons
The M nuclei are fixed in R, (no spin, no relativistic effects)
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Ansatz: W(r,,ry,...,ry,Ry,...,Ry )= (r,ryse s Py AR X (Ry,-. s Ry,

The electronic part of the wave function is too complex to be
straightforwardly computed !!!
Ex: N=10, P points to interpolate on each spatial coordinate > P*° variables !!!

Is there any way to avoid the exponential growth of complexity with N ?



I. The electron density as the basic variable

From density to Hamiltonian : an isolated atom

The (ground-state) electron density is a N

contraction over the spatial coordinates : n(r)z(zpolz 5 (r_ri)|¢0>
* Function of 3 coordinates, independently of N i=1

* Itisin principle measurable

(almost) exact electron density .
for an isolated atom (ground state) .
* Whereis the nucleus (R) ?
* How many electrons (N) ?
* Atomic number Z?

: n(r)

R i
H=) |- "V, _ ze £y e’ ‘ R, N, Z, from n(r) > the specific
i=1 2m ‘rl.—R| |l”,-—rj| Hamiltonian is found !!!

i<j



I. The electron density as the basic variable

From density to Hamiltonian : Hohenberg-Kohn theorems

universal Hamiltonian System-specific one- Careful: we work at constant
for N electrons electron operator number of electrons N
v [ RV > ]
H:Z o 2 l+z & +Zvext<ri)
i=1]| m . |ri_rj|_ i=1
HK theorem #1
There is a one-to-one correspondence between ‘
ground-state electron densities and ext. potentials ‘

E[n]:F[n]+f drn(r)v, (r)

HK theorem #2
E[n] has @ minimum for the true ground-state

electron density n (r) (among all possible ones)
- find n (r) by minimizing E[n]




I. The electron density as the basic variable

Constrained search

The “constrained-search” approach by Levy
M. Levy, PNAS 76 6062 (1979)

0. Search for the lowest energy E = liminf (W|T+V_+V__[W¥)
among all N-electron wfs. P ee = ext

Be E the ground-state energy

1. Form classes of all N-electron wfs e
that give the same density n(r), and E,[n] = lqul;l_)lilf <qj|T+Vee|qj>+f drn(r)vext(r)

minimize the energy

2. Consider the wfs yielding £ [n/

and now minimize with respect to
the density at fixed v(7)

E = liminf E [n]

n

“Conventional”step 0 is equivalent to steps 1+2



1)

2) Minimizing the energy functional; the Kohn-Sham
equations

3)




Il. Minimizing E[n]
variational approach

+f dr,n(r,)v, (r,)

Minimize E/n] at constant number N of electrons:

0 + rn(r _0T|n] + o2 (rl)_l_éU[n]_l_ N
Sa Bl drnln)f= e e dr g T Saie) Vel

} }

UNKNOWN FUNCTIONALS !!!

The Lagrange multiplier 2 on the number of OE[n]
electrons is the electron chemical potential : ON —H




Il. Minimizing E[n]

interacting vs. non-interacting electrons : density

A year later (1965), Kohn and Sham had a brilliant idea: the density of the physical
system (with e-e interaction) can be reproduced by a fictitious system (without e-
e interaction) in a suitable one-electron external potential

Example: the He atom

2\72  #2\72
_h V1_hv2 2 e’ 2€2+ e’

2m  2m ry ) ry - |ry=r n(r) =n(r)
) |

h2v2 thZ ) )
L 2_2e Ze‘ +5V(r, )46V (r,) ' -
2

2m  2m _|r1‘_|r




Il. Minimizing E[n]

interacting vs. non-interacting electrons : potential

T|n]+U|[n]=T,[n]+E, |[n] Interacting system (real)
E[n]:TO[n]+e;fdr1fdr2n<|:1>_nr(72>+EXC[n]+Jﬂdrn(rl)Vext(rl)
1 2
5T,[n] , n(r,) OE.[n] -
Sn(r) e fdr1|r—r1| Sn(r) Veulr) = u
oT
5n0<[:;] + 0V(r) +V, . (r) = u Non-interacting system (virtual)

The non-interacting system has the

same electron density of the real Zf n 1‘1 5 Eln]
system under the effective one- " r=ry|  on(r)
electron potential

I

+V o 1)



Il. Minimizing E[n]

the Kohn-Sham equations

Although T /n] is unknown, we can solve the non-interacting N-electron system !

1. Expand the density in the virtual one-electron occupied orbitals

=é|¢i(")2

2. Each orbital obeys a Schrodinger equation in the effective one-electron potential

RAVE 2 n(r,) 5EXC[n]
l— ™ +Veff(r)]¢i(r>:6i¢i(r) with V .[d 1|r r (5n(r) +Vext(r)
* Theoretical foundation of one-electron o
equations for N interacting electrons / \
* Self-consistent equations n(r) <— [ﬁbi(")]



2)

3) The exchange-correlation energy: basic definitions and
properties and the main approximations (LDA, GGA, hybrid
functionals)

4)

5)




lll. Exchange-correlation density functional
basic definitions

Difference between the kinetic energy Difference between the e-e repulsion of the

of the interacting vs. the non- quantum and the classical electron gas :
interacting electron gas atthesame  * Exchange between paired electrons
density * Correlation between electrons

» Self-interaction correction

The exact E, [n] is unknown apart from ideal systems (homogeneous

electron gas) but there are many available approximations for the non-
homogeneous electron gas




lll. Exchange-correlation density functional

Example: the He atom, ground state

2N72  $2\72
B nVy B Vs _2e* 2¢e° N e’ Singlet ground state (L=0, S=0)
2m  2m r| |ry| |r—ry =-5.8075 Ryd

0

H =

W(rpaprz,(fz) — 90(r1’r2><)7(1~(1>%4«(2>_)(¢<1)X'r(z))/\/z

Trial #1 : qo(rl,rz) zga(rl)ga(rz) with ga<r>:%—ﬁv EXP(_O”")

E\V=lim inf (y|H|yp)> o =+1.6875,E\=—5.5695 Ryd
Trial #2 §0<r1,r2) — ga(r1)gﬁ(r2>+gﬁ<r1)ga(rz)

Egz):hm;nf<w|H|w>-)a:+2.],8,[3’:+1.19,E£)2):—5.5751Ryd 2,

a #v (3> the electrons are dynamically correlated
and sit on different orbitals




lll. Exchange-correlation density functional

The spurious self-interaction

The H atom: a trivial case ?

- °V? e’ _ The exact Schrodinger equation
- om  r ¢(r)_€¢(r) for the one-electron orbital

i , i
_hZVZ_ez ZJ"drlkb(rl)' +5EXC[H] ¢(r)=€eg¢(r) The KS equation

+e
2m r—ry|  on(r)

The Kohn-Sham equation for the one-electron orbital is wrong, unless the XC
potential exactly compensates the self-interaction Coulomb term
(not automatic for any approximated functional)

The spurious self-interaction can be significant on localized orbitals (d and f states atomic-
like states, trapped electrons, etc.).
It can be partially corrected via LDA+U (GGA+U) and hybrid functionals



lll. Exchange-correlation density functional

The Jacob’s ladder
Ooups ... we have to think the XC energy as a functional of the electron density
| N Em 1
L7

Meta-GGA, including small dishomogeneity
of the kinetic energy functional

Hybrid functionals including a fraction of Fock
exchange via the KS orbitals

DFT-vdW including dispersion via the (approximate)
response function of the electron gas

Generalized Gradient Approximations (GGA, 5-GGA)

Local Density Approximations (LDA, LSDA)



lll. Exchange-correlation density functional

Formal properties

| R— ] I\ ——o _3
- Uniform coordinate r'=Ar and  n'(r')=A""n(r)
Scaling —> EX[TI']:A,_lEX[n] and To[n']:),_zTo[n]

- Coupling-constant Varying the electron charge adiabatically, by keeping the electron

integration density clamped at that of the interacting (s=1) system

1
(e — se) EXC[n]Z_fdS<‘PS15)|V£Z)|‘I’§15)>_U[n]

)nXC(r1 ,rz) XC hqlg: conditional
probability to have an electron
atr,when anotheris atr,

0
2
. Sum rules EXC[n]:%f drlfdrzn(rl‘r — |
1 2

—  [dryn,.(r,,r,)=—1 Vr,

+ Size consistency E,.[n,+n,|>E, [n,|+E, [n;]

For spatially-separated A and B systems



lll. Exchange-correlation density functional

Extension to spin (non-relativistic case)

1. Choose an (arbitrary) axis z of quantization for the spin > S,
2. Consider spin-up and spin-down KS orbitals - spin-up and spin-down densities

3. The XC functional depends on both densities:  E, [ny,n4]

4. The KS spin-orbitals obey distinct Kohn-Sham equations

#2\/2 n(r,) 0E,.[ny,n,]
o e PR (RN

+Vext(r) ¢i,1*(r):€i,1~¢i,1~(r)



lll. Exchange-correlation density functional

The homogeneous electron gas (heg)

A solvable model: the homogeneous electron gas

n(r) = n = NIVVr E,.[n] » E()?gg) = Ne()?ég)(ﬁ)
The exchange-correlation energy per e()?(ejg)

electron €\'*'(71) can be obtained from
guantum MonteCarlo simulations of the
heg for various mean densities n
(Ceperley & Alder, PRL 45, 566 (1980)

~|

Note that the exchange energy of the heg can be easily computed

e()?eg)(ﬁ) = —%(3%217)1/3



lll. Exchange-correlation density functional

The Local Density Approximation (LDA)

The homogeneous electron gas the inhomogeneous gas in the LDA
h N (heg)(— LDA h
EN9)=y X oliea) (p) E'PA= [ drn(r)el(n(r))

XC as a sum of local contributions

A

LDA is not too bad in many systems with

moderate XC effects (simple metals,

elemental semiconductors, etc.)

* Sum rule: the XC hole contains exactly an
electron

* Good in the high-density limit

* Partial error compensation:
underestimated |E,*®| and

overestimated |E_®"|

Difference between QMC and LDA exchange and
correlation energies in Si (Hood et al. PRB 57, 8972)




lll. Exchange-correlation density functional

The Generalized Gradient Approximation (GGA)

Improving on the LDA via corrections depending on the density gradient

. Vn(r
B =BG 4 drFyo(n(r)s(r))  wn s(r)=gh

Distinct parametrizations of F, _ are available. Most of them behaves :
« 0<s<1:significant contributionsto E

* 1<s<3:secondary contributions, still appreciable
* s >3:can be neglected, avoiding the unphysical divergence of the naive gradient

expansion fors > o

Main characteristics of GGAs (BP86, PW91, PBE, rPBE, PBEsol, etc.):
* Good description of weak bonds (H bonds)
* Atomic densities better described than in the GGA
* Often GGA outperforms LDA, sometimes GGA overcorrects LDA
* Long-range interactions (vdW) and strong correlated systems badly accounted for



lll. Exchange-correlation density functional

Performances: GGA vs LDA

Atoms: Molecules:
Exchange-correlation energies in Ha Atomization energiesin Ha
Atom LsD GGA Exact Molecule LSD GGA Exact
H —0.29 —0.31 —0.31 H- 4.9 4.6 4.7
He —1.00 —1.06 —1.09 CHy 20,0 18.2 15.2
Li —1.69 —1.581 —1.83 NH3 14.6 13.1 12.9
Be —2.54 —2.72 —2.76 H-0 11.6  10.1 10.1
N —6.32 —6.73 —6.78 CO 13.0 11.7 11.2
Ne —11.78 —12.42 —12.50 Oa 7.6 6.2 5.2
Molecules and Solids: A notable exception: the Au crystal
mean relative errors LSDA  GGA Au ay (bohr) —Eeop (eV)
* Bond lengths -1% +1% LDA 7 68 419
* Strengthof Hbonds +43%  +5% RLDA T 68 4.09
* Frequencies +3 % -3% GGA 7.87 2.01
* Electron affinity +19%  +12% RGGA 7.88 2.89
expt. 7.67 3.78




lll. Exchange-correlation density functional

Performances: GGA vs LDA

Property LSD GGA

E, 5% (not negative enough) 0.5%

E. 100% (too negative) 5%

bond length 1% (too short) 1% (too long)
structure overly favors close packing more correct

energy barrier 100% (too low) 30% (too low)
Approximation Mean absolute error (eV)
Unrestricted Hartree-Fock 3.1 (underbinding)

LSD 1.3 (overbinding)

GGA 0.3 (mostly overbinding)
Desired “chemical accuracy” 0.05

Perdew & Kurth, in “A primer in Density Functional Theory”, edited by C. Fiolhais,
F. Nogueira and M.A.L. Marques, Springer (2003)



lll. Exchange-correlation density functional

Orbital-dependent exchange

What about writing the exchange energy in terms of the Kohn-Sham orbitals
instead of the density ? hum, not really a theory based on the density ...

EXC:EC[H]+EX[¢1,G’¢2,o”“’¢N,a]

The Kohn-Sham equations become integral equations :

_hZVZ_l_ezJ“ drl n(rl) +‘5Ec[n1~:n~b]
r—ri|  On,(r)

+Vext(r)}¢i,a(r)

+622fdr ¢i,a(r1)g_bj,a<r1)¢j,g(r)

|r—rJ

:Ei,a¢i,o(r>

This increases the numerical complexity when:
1) Solving the KS equations at fixed potential
2) Iterating to self-consistency



lll. Exchange-correlation density functional

Hybrid functionals : B3LYP

_ 1-(GGA)
XC _EC

E [n]+E,[l¢; ,/] = worse results than in the GGA

Fock theory has indeed many drawbacks ...
Pragmatically (B3LYP) : try a_linear combination of LSDA and “exact” exchange

E(BBLYP) (LSDA)

|\B3LYP)_ plLS [n]+a0(EX[{qbi’a}]—E(XLSDA>[n])+aXAE()?BS)[n]+aCAE£:LYP)[n]

GGA correction to E, """ GGA correction to E_®"

Three free parameters a,,a.,a

0> X’>7C

They were determined by a fit to a global set (“G2” set) of molecular properties

Pros and cons

First XC approximation to provide reasonable energies for strongly correlated electron
systems

KS orbitals and eigenvalues closer to interacting-electron counterparts

Numerical complexity, difficult to implement in plane-wave based codes
Really ab initio ?



lll. Exchange-correlation density functional

Spatially-separated hybrid functionals : HSE06

Is bare (Fock) exchange suitable for solids? (e-e interaction is screened at long range)

Heyd, Scuseria and Ernzerhof introduced in 2006 a hybrid functional, where the
linear combination of GGA and Fock exchange is controlled by two parameters

E(XI-éSEOG):aE;ﬂ[{qbi’a}]_l_(l_a)E()fBE—sr)[n]_l_E()fBE—lr)[n]_l_E(é-’BE)[n]

Fock exchange, short-range  GGA exchange, short-range  GGA exchange, long-range

Typicalvalues:  ¢~0.25 ; w~020A"" o definesthe typical cutoff distance
between short and long range

Pros and cons

Often better than B3LYP in solids, not necessarily in finite systems (molecules)
KS orbitals and eigenvalues rather close to interacting-electron counterparts
Numerical complexity, difficult to implement in plane-wave based codes
Physically sound, the range separation can be justified by many-body theories



(TT0Z) 0L99 ‘€T dDJ2d ‘DWWl

Complete set

-

1240/ AVILLA { 10w Eay)  AVINLM

meta-GGA

, GGA,

LDA

LI

Basic properties

Non-covalent interactions

E mela-GGAs

B 1LDAs
B GGAs

lll. Exchange-correlation density functional

Performances

-
( Jow )/ q



4) Plane-wave implementation

5)




IV. Plane Waves

PW expansion : fundamentals

Framework: solve the Kohn-Sham equations at fixed effective potential
(for how to attain self-consistency, listen at the next lectures ...)

1. Work in the crystal representation (i.e. periodic boundary conditions)
¢i,k(r) = eplkr ui’k(r) with ui’k(r+z (11a1+12a2+l3a3)) = ui,k(r)
2. Expand the periodic part of the orbital in PWs with wave vector G=m,b,+m,b,+mb,

. .(r) = > c(k+G) € T g(EY —pk+GP12m)
G
Fourier expansion coeffs: the dof in PW-based codes ~ The sum is truncated at the cutoff energy E(Ci)t

3. Expand the other periodic quantities (density, potential) in plane waves
n(r) = Z n(G) 0 (E(Z) —H°G?/2 m) second cutoff energy E(Ci)t

cut
G

4, Adjust the two cutoff energies in order to attain converged quantities
The higher the cutoff, the more accurate the results, the slower the calculations



IV. Plane Waves

the super-cell

PW'’s are a complete basis set for any periodic function ...
What about clusters, defects, surfaces ?

------ AR 555505 55535555 ] ';ﬁf
LRGN BH eI IE e e eescssd .
é 8088 :g‘i_ st
SR RS pessasnissassnassse: Wt g bty o
...... A ?Hhﬁ'}? : : {]:g ﬁ -ﬁﬁ
: _:;---H_Iz:g- -1-;-_---_ -'-ui‘----llrln‘i--'fl'l-

They are artificially made periodic |

© Some spurious interactions can be avoided by enlarging
the unit cell

@ Some others are long-range ( /&r [V(r)| diverges). EX:
charge-charge, charge-dipole, dipole-dipole = use of
compensating background (uniform charge, dipole) or other
numerical skills

I



IV. Plane Waves

the calculation of the electron density

Usually, about 10* PWs in a super-cell calculation: we must avoid any double sum
over reciprocal (G) wave-vectors - massive use of fast Fourier transforms (FFT)

Example: the electron density

n(r) = Z Wk|ui,k(r)|2 Productin r-space < convolution in G-space
i,k
Instead:
c.(k+G) L ui,k(r) —» n(r)= > wk|ul.’k(r)|2
i,k
7(G) - FFT |

These operations are of the orderof N M, logM_

Number of occupied orbitals Number of Pws (grid 1)



IV. Plane Waves

R-space (direct) and G-space (reciprocal)

Some terms are easier to compute in the direct (r -) space, others in
the reciprocal (G -) space

E;{.;[H{l‘]] =j fH{I“') + ”f:(r))f:m:f-"?(rj + ”{:(r)) dr

XC energy and 2
potential (LDA) vee(n(r)) = d((n+ ne)exeln +nc))
dn n=nlrvn.=n.(r
Hartre_e 0(G) = { 27820 Y G20 Ii-i[lﬁ when G # 0,
potential 0 when G = 0.
Fast Fourier T f FFT il
ast Fourier Transforms ( s) are ry - " (G

used to avoid convolution products EET -1



4)

5) Pseudo-potentials, an historical perspective: core and
valence electrons,



V. Pseudo-potentials

Core and valence states

We aim at simulating material properties: Coreregion: Interstitial
1. Do we really need to describe core states ? atomic-tike, quick - region(bonding)
' . y R . ' oscillations smooth variations
2. For certain properties, is it possible to adopt
a partial representation of valence states ? R,

-~ = i Huge gradients
Imply many plane | V0 i

—%_ | Wwavesforthe orbital Valence state and Coulomb

~1 expansion ... “potential in a crystal
W — d"\\?

-+
WAWWWW

How to “get rid” of core states ?
How to properly “replace” the true valence states with smooth ones ?



V. Pseudo-potentials

The heuristic approach

A simple model: the 1D potential well.
When varying the well depth, the number of bound states grows.
Among certain depths, the energy of the uppermost states coincides

N A

Va

The idea: replace V_with V,, by reproducing the relevant properties of
the valence (uppermost) states.

An old idea: Fermi (1936), Philips & Kleinman (1959), and others ...



V. Pseudo-potentials

Phillips & Kleinman : projectors

y,) “tue’valencestate = Hly,)=¢€ly,) and (yp,)=0
va>=|¢v>—ch|wc><wC|¢v> ¢,)  pseudo-valence state
Which equation for |#,) 2 H+§(ev—ec)|wc><wcl 6,)=¢€,10,)

- |¢,) hassame eigenvalueas |¥,) !

- The.pseudo—Ham!ltonlan having |¢)v> as solgtlo.n, Hps:H+Z (Ev_€c>|wc><wc|
contains now a projector on the core states, which is -
(1) short-range, (2) non-local, and (3) repulsive

Careful: non-unique solutions !!! ex.trywith |9 D=l =2 alw,)
C



4)

5) Pseudo-potentials, an historical perspective:
norm-conserving and ultra-soft PSPs



V. Pseudo-potentials

“Ab initio” pseudopotentials: main ingredients

What are they made of ? Norm-conserving pseudopotential, Al

* Along-range Coulomb-like ionic
—0 r§=1212f

max

Z Z AVP(r) S (r=r )Y, ) (Y, s R

!
=0 m=-1 IJ

N~

potential by the nucleus and the . 0 =

— 1 ri=1547 &

core electrons . 3s —2 r5=1547, =

g 3

. _ (z-N) = Z,,(r) = g
loc™ =

r r = s

 Ashort-range, non-local projector, g i 2

. . (al

usually repulsive and different for T o

each angular moment -2 S

' k)

b

(]

3

oJ

£

O

T

Local in r, non-local on the angular coordinates r  (bohr)




V. Pseudo-potentials

Semi-local and separable pseudopotentials

A computational “trick”: The Fourier transform of fully non-local pseudopotentials (in
r, 0, ¢) is simply the product of two matrix elements :

(G (N0 Y)Y pufull ) G = (GIf )Yy (F0 Y lG)

Fully non-local pseudopotentials are very desirable in plane-waves based codes
How to go from semi-local to fully non-local pseudopotentials ?

1)At given [, use the radial Zb|fm><fnz| = o(r—r’)
eigenstates as projectors "~ B
2) Define a dual space BrrwlfaYim) = 0w 0110m m
3) And obtain, after some algebra V(Ps)zvloml@(r_rv) + Z; | Z,: B,l¢,)(9 |
i=nlm j=n'l"m'
with B, =(pNaviPavielly )

Actually, Kleinman & Bylander proposed in 1982 a similar transformation where only one
term of the expansion in (1) was retained ... partial representation of the 6 function
> low-energy spurious solutions below the valence energies (“ghost states”)




V. Pseudo-potentials

“Standard’ recipe for norm-conserving pseudo-potential

1)Separation core/valence and choice of the reference atomic configuration
> true (“all-electron”) valence wave-function
2) Pseudization: from the true wf to the nodeless, smooth pseudo-wf

)
3) Modeling the core charge density (for non-linear core corrections)
4) Invert the atomic KS equation and find the effective potential
5)Subtract out from the effective potential the XC and Coulomb terms - ionic psp
Pseudo ¥s All-Electron Wavefunctions Al lonic Pseudopotentials Al
."Lé;";.ﬁ';'lfg"l;”" 1 T L e i
p 38 ] — 1 5= 15470
S| T =l — 38 —_— ré: 1.547]
E r§ = 1.547 i .
= E 0
g =
: =
= _
5 .
-3 :,-"r_g

H
=




V. Pseudo-potentials

Testing the pseudo-potential

1)Choice of the local component of the pseudo-potential in order to avoid ghost states -
see Gonze et al, PRB 41 12264 (1991)
2) For the atom: compare all-electron valence states to valence states obtained by using
the pseudo-potential
3)Compute the logarithmic derivatives (connected to the scattering properties of the
pseudopotential on states at different energies)
4) For some reference systems : compare all-electron to psp observables

logarithmic derivative (arbitrary scale)

D(r: €)= [d¢/dr |./ ¢ (1)

Al 998 — 2 99 bohr

-2 -1
energy

(hartree)

TRANSFERABILITY

d —
How does the pseudo-
potential work for

7 different systems ?

5 L
n -
J" 'S
] Y 'E
-5 " "l‘ "‘
4 \ n
: ’( . h
" %
‘\
-10 =3—= frozen cora “
[H--£ pseudo atom '
"l-
\
LY
L
=15 | |

3: 2 2 2 2 2 17515125 1
3p: 0 025 05075 1 125 1.5 1.75 2
occupation




V. Pseudo-potentials

Ultra-soft pseudopotentials

i - AE AE

Up to now, we considered norm- <f ps Ylm|f(ps)Y ) = <f$,,, ) lm|f511 )Ym> - 1
conserving pseudo-potentials, that is
Relaxing this condition allows the pseudo- Cu

: All-electron (AE)
wave-function to be smoother 3d radial wave funiction
> low energy cutoff for PW expansion i | '
But the norm conservation improves psp Ps ud/@"’(PS
transferability ... e :

0 2 4 6
r(a.u.)

Vanderbilt PRB 41 7892 (1990) -
1) Use several projectors at different energies for V'*'=V, __d(r—r') + Z > B.|B,)(B |
each angular channel J

=¥ 160+ D Q) (91162 (Brloi) |

2) Augment the valence charge with pre-defined nm,I

functions that are localized in the core region Ultra-soft Augment,at'on
Pseudo wf charge (fixed)
Small cutoff Large cutoff



4)

5) Pseudo-potentials, an historical perspective:
Projector-Augmented Waves (PAW)




V. Projector-Augmented Waves (PAW)

Up to now, we have mainly tried to reproduce the valence wave-functions
TAIL (i.e. the relevant part for bonding)....

What about trying to shadow the TOTAL true wave-function ¥ ?

Within core: r <R, Outside core: r>R_

Consider radial true

(pseudo) orbitals ¢, (¢ ;) Y-y

Y=2,C ¢
q’:zfcﬂ;f

First (original) paper on PAW: Blochl, PRB 50, 17953 (1994)



V. Projector-Augmented Waves

The full electron density & the double grid

Core-electron density is a steep
function - expanded on a atom-
centered radial grid

Valence-electron density is much
softer = expansion in plane waves

Radial probability

Distance from nucleus (pm)

N HaRx

Full Expansion Correction
electron expansmn on the on the
density radial grid radial grid



V. Projector-Augmented Waves

The representation of the full electron density

n(r) = n,75(r)+ n,(r) - on,(r)

n,PS(r) : reproduces the smooth valence density outside
the core region - expanded on a PW (uniform) grid

n,r)=2. 5 Py <Y, Ir> <r| v ;> © All-electron on-site density, short-ranged
on,(r) =X ij Py <@;[r> <r|®. > correction, short-ranged

n,(r), on,(r) represented on a RADIAL mesh, centered on the nucleus

» As in linear methods (FLAPW) use of a double mesh (radial + uniform)

+ At variance with linear methods, no need of taking into account the

continuity of the function and its derivatives on the sphere border (&n.(r)
does the job I)



V. Projector-Augmented Waves

Pros and cons

+ Necessarily, finite number of projectors =» n,(r) (all-electron, on-site core
density) does not have the right m-pole moments at any order =
introduction of another compensating charge distribution

» Four terms for the valence density, one more for the core density = many
terms appear in the expression of the total energy, which must be treated
on different grids

» Derivatives of the total energy : even more involved expressions

« PAW can be considered as a bridge between all-electron linear methods
and pseudopotential technigues: two worlds far apart coming together ...

- Exact correspondence between the US-PSP and PAW formalism, within
the frozen-core approximation:

= US-PSP is shown to be exact at the 15t order changes in core density
=2 PAW enables systematic tests on US-PSP calculations
=2 US pseudopotentials can be built up with reference to PAW formalism



V. Projector-Augmented Waves

PAW versus Ultra Soft pseudo-potentials (USPsP)

US-PSP [n0) =3[ 14 (r)|“+Zqﬂm(r)wAﬁﬂ)(ﬁmlm]‘

nm,]

Augmentation charge Q.. (7) = Y% (1)U (1) — ¢X (1) dm (r)

In PAW, Q. (1) is represented on a radial grid, while in current
Implementations of US-PSP, it is expanded on the finer PW grid

=2 US-PSP can be as accurate as PAW at the expense of an enormous
waste (very fine PW double grid)

Kresse's recipe to the simple generation of highly transferable US-PSP's:

I. generate very accurate norm-conserving pseudopotentials and
pseudowfs. ¢ N¢(r) with very small cutoff radii

ii. “Pseudize” the NC-PSP by defining the augmentation functions as:
QM =0 ,"@ ¢ " @)-¢,0) ¢, @)

iii. Restore the correct behavior of the all-electron wfs. on the radial grid



V. Projector-Augmented Waves

Results (1)

Parameters of PAW dataset and USPsP Bond lengths in dimers and molecules
Kresse & Joubert, PRB 59, 1758 (1999) Kresse & Joubert, PRB 59, 1758 (1999)
Valence r:'. ERIN :mm {a.u.) [ o eV
1" Is 1.2 0.8 400 LS-PP PAW AE
1 s s 2. 2
[l;\ S | :; | ! ::': I, 1447 |.447 1446
5 ::;i: AP 0 o Lis 5,127 50200 50200
« 2x2p L ; |.5P 1.1 41K Be, ha2d 4320 4.311°
N 252p 1.3 s, 1.1 400 Nag o7 =063 =67
b 2s2p 1305 11 100 Co 2041 (2127) 2,141 (2,128 2,129
a 2y Yy ! s 0 N; 2,077 (2,066} 2076 (2.068) 2068
. Te3p o s an ks 2,640 (2.626) 2.633 (2.621) 2615
P 3s3p |0 |5 240 Py 3570 3.570 3.572°
Call) 3pdsdd 30, 2-3p.:4' 1.5 130 H, | .54 (1.834) .83 (1.835) 1.8337
Cal?] Is3pasid 23 110 e Ho00) 105,37 (1057 L0535 104,87 LS.
v 3pdsdp3d >3 R 260 BF; 2,476 (2,470} 2,476 (2.470) 2 464"
Fe dsdp3d 2.2 1.9, . 1.5, 300 SiFy 2953 [2.948) 2.933 (2.948) 2.949"
Co dudp3d 2.2 1.9 30K
M1 dudp 3 2.2 |9 ATH) AE = A“‘electron




V. Projector-Augmented Waves

Results (2)

Cohesive properties of Si, bcc V, bec Li
Kresse & Joubert, PRB 59, 1758 (1999)

a (A7) E o (eV) i (GPal

Relative stability of some phases of Fe with
respect to non-magnetic (NM) hcp Fe

gilicon

US-PPMcurrent) 5.40 — 5.06 95
PA current) 3440 — 3.5 a5
PAW® 538 — .07 98
LAPW? 541 —5.92 %
bee W
LUS-PPcurrent) 2.93 — 0.4 2
AW current) 2,93 — .30 210
PAWT 204 — 0 30 2
LAPWH 2,94 — 0,27 204
bee L
PAW{ 15 val) 3.363 —2.034 | 500
PAW( s frozen) 3,368 — 2037 | 5.0
PAW(s only) 3,368 — 2,026 1500
PAW{ 15 frozen, no po) 3,348 —2.027 | 5.0
PAW( s only, no po) 3463 —1.711 2.6
AEP 336 15.0

FLAPW! PAW US-AE US-PP

hee Fe NM 412 (373) 413 (372) 413 (369)
bee Fe FM 133 (=73) 139 (=73) 139 {=73) 81 (—191)
fcc Fe NM 77 (78) 71 (61) 70 (62) 70 (62)
hep Fe NM 0 0 (0

LSDA results compared to sGGA in brackets

FLAPW="Fully Linear Augmented Plane Waves”
(all-electron calculations for crystals)
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