

X. Gonze Université catholique de Louvain and Skolkovo Institute of Technology

Thanks to the > 50 ABINIT contributors, and especially to GM Rignanese for contributions to the slides

binit

UCLouvain

Skoltech

ABINIT software project

Ideas (1997) :

- 1) Software for first-principles simulations are more and more complex : needs a worldwide collaboration, of specialized, complementary, groups
- 2) Linux software development : 'free software' model

Now (2019) :

2000 registered people on the forum
800 kLines of F90 + many python scripts (abipy) about 50 contributors to ABINITv8

Last release v8.10.3, used in this school http://www.abinit.org

UCLouvain

Skoltech

Available freely (GPL, like Linux).

Praha, September 2, 2019

Properties from DFT+MBPT+ ...

Computation of ...

interatomic distances, angles, total energies electronic charge densities, electronic energies

A basis for the computation of ... chemical reactions electronic transport vibrational properties thermal capacity dielectric behaviour optical response superconductivity surface properties spectroscopic responses

Basic Documentation

Web site http://docs.abinit.org

- User's guides
- Installations notes
- List of input variables + description
- List of topics = a hub to input variables, files, tutorial, bibrefs
- > over 800 example input files
- >30 tutorial lessons (each 1-2 hours) https://docs.abinit.org/tutorial
- + Forum Web site http://forum.abinit.org

ABINIT tutorial : layout + dependencies

binit

Skoltech

ABINIT + python : Abipy, Abitutorials ...

ABINIT organization on GitHUB <u>https://github.com/abinit</u>

Abipy : python library for launching ABINIT jobs, and analysing/plotting the results <u>http://pythonhosted.org/abipy</u> => e.g. connecting ABINIT with tools for high-throughput calculations developed in the Materials Project context (like Pymatgen, Fireworks).

Abitutorials : tutorial based on Jupyter notebooks ABINIT+python

Running ABINIT : basics

Density Functional Theory calculations

In ABINIT ...

Representation of mathematical formalism with a Plane Wave basis set :

- wavefunctions
- density, potential

Periodic boundary conditions

=> wavefunctions characterized by a wavevector (k-vector)

PseudoPotentials (or Projector Augmented Waves – PAW)

Iterative techniques to solve the equations (Schrödinger equation ; DFT Self-consistency ; optimisation of atomic positions)

External files in a ABINIT run

Results :

log, main output, energy derivatives (_DDB), ... – text files density (_DEN), potential (_POT), wavefunctions (_WFK), ... – binary F90 files or similar files in netCDF (_DEN.nc, _POT.nc, _WFK.nc)

Advantage of netCDF : portable, addressed by content, extensible, Python-friendly

ABINIT : the pipeline and the driver

Basic 'files' file : delivers filenames

h2.in	Name of input file
h2.out	Name of main output file
h2i	'Root' name for possibly other input files
h2o	'Root' name for possibly other output files
h2	'Root' name for temporary files
hydrogen.hgh	Name for the pseudopotential file for atoms of type 1
oxygen.pspnc	Name for the pseudopotential file for atoms of type 2
92u.psp	Name for the pseudopotential file for atoms of type 3

Made of at least 6 lines (more if > 1 type of atoms) with one name/address specified on each of these lines.

A basic 'input' file : dihydrogen (I)

H2 molecule in big cubic box

 \mathcal{A}

	Praha, September 2, 2019
0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 2, in Bohr
-0.7 0.0 0.0	# Triplet giving cartesian coordinates of atom 1, in Bohr
	# will follow, one triplet of number for each atom
xcart	# This keyword indicate that location of the atoms
typat 1 1	# Both are of type 1, that is, Hydrogen
natom 2	# Two atoms
# Definition of the a	toms
	# mentioned in menames me must correspond # to typo(s) of atom. Hore, the only typo is Hydrogon
	# possible type(s) of atom. Pseudopotential(s)
znuci 1	# Keyword "znucl" refers to atomic number of
ntypat 1	# Only one type of atom
# Definition of the a	tom types
	# lengths of primitive vectors (default in Bohr)
acell 10 10 10	# Keyword "acell" refers to
# Definition of the u	nit cell
y	
# Kevwords followe	d by values. Order of keywords in file is not important.
# Characters after	'#' or after 'l' are comments, will be ignored

A basic input file : dihydrogen (II)

ecut 10.0 # Maximal plane-wave kinetic energy cut-off, in Hartree

Definition of k-point grid

kptopt 0 # Enter k points manually # Only one k point is needed for isolated system, nkpt 1 # taken by default to be 0.0 0.0 0.0

#Definition of SCF (self-consistent field) procedure

Maximal number of SCF cycles nstep 10 # Will stop when, twice in a row, the difference toldfe 1.0d-6 # between two consecutive evaluations of total energy # differs by less than toldfe (default in Hartree) # Although this is not mandatory, it is worth to precondition the diemac 2.0 # SCF cycle. A model dielectric function, used as standard # preconditioner, is described in "dielng" input variable section.

Here, we follow prescriptions for molecules in a big box ## After modifying the following section, one might need to ...

#%%<BEGIN TEST_INFO> Metadata ... to be ignored in the tutorial !

